
Technical Report

CMU/SEI-90-TR-6FriP FILE Cofn"S"T°2
Carnegie-Mellon University

- Software Engineering Institute

C1)

(0
N

Implementing Sporadic Servers
in Ada

Am Brinkley Sprunt
Lul Sha

May 1990 LTE

" , ,. iELECTrE

SEP25

i//
//

/* 4

//4

ION 4 '

Apvo"ed /r~obiic , ase.

1/II,*

This PageReproduced FromBest Available Copy

The following tatemnent of imiuvence 16 more than a dIateimofl frlu~ad In cohipgy with the "eoiral law, This A a vcoon siarr N fth inwlmly li) aivieA
People ale included in Tltystlhy which makes Carnegie Moltui an exciig olace (Cameoti Motion withes to 'eiciiuii ri~il* wioeiiuil lo viuto o AM i
origln, sox, handcsp. religion. wreed, ancestry, bhlf, ago, Wallian ulaim or sifiai ofierot,

Carnegie Mellon University does not ciciirinatis and Carnegie Mellon Urwitily 0 romvirad nrn loi ii a'nnunlr in *,o-n~t~ rq unn Ar-~A'u~ uiio ti.A
c010,, national rogin. sox or honndcap in ttitlon nit Ytlle V1lth O11W MI ts Acl of 1%1i41 IX , lt10 E ilifliti Mii~liri i li ~~'~ iA

Rehobilation Act ol 1973 or other ",deal. tals, or locAl laws orl einnctd id litr. in arittll Tarrnregw Moion donri Mde mnui i,*e.i'tmi n
the troaa, neuif, crowed anceslt. liflof, age. velv~an alaiiA Lu Strial ofionlAtion in n.aliim of any wierll. br~ law (4 n lwmt ulii(.'
,ngaplcation of tl oolilly tirruln her dIracld to [he P~rt Catnoget Mallon Uineraily RM ~FMnrWA Avenlwin*Mtijri, PA Ol i> li

Vire PeWa*an l Enrollment, Carneagie Mellon Ulneerouty. 5MO Forti Ailenuo, Priltaioh PA 75213 laolihdrbaelu 'fiti Ml

Technical Report
CMU/SEI-90-TR-6

ESD-90-TR-207
May 1990

* Implementing Sporadic Servers
in Ada

Brinkley Sprunt
Department of Electrical and Computer Engineering

* Lui Sha
Real-Time Scheduling in Ada Project

SF117- 6;9-9'5--400o3

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh Pennsylvania 15213

0

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official 0
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication. 0

FOR THE COMMANDER

C~rls ~~,2jrUSAF
SEI Joint Program Office

0

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and itinsfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Ciero:n StOlon, Alexandria, VA >2304-A I AA

Copies of this document are also available through the National Technical Information Service. For information on ordering, 0
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the righte of the trademark holder

Table of Contents
1. Introduction 1

1.1. Background 2
2. The Sporadic Server Algorithm 5

2.1. SS Algorithm Examples 6
2.2. Sporadic Servers and Priority Inheritance Protocols 10

3. Implementing a Sporadic Server with an Application-Level Ada Task 15
4. A Full Implementation of Sporadic Servers in an Ada Runtime System 19

4.1. Sporadic Servers and Ada Semantics 20
4.2. Runtime Data Structures for Sporadic Servers 20
4.3. Data Structures for Scheduling Aperiodic Tasks that Use Sporadic 20

Servers
4.3.1. Sporadic Server Queues 20
4.3.2. Aperiodic Task Queues 21
4.3.3. The Sporadic Server Control Block (SSCB) 21
4.3.4. Task Control Block Extensions 22
4.3.5. Sporadic Server Data Structure Example 22
4.3.6. Modification of the TaskReadyQueue Support Routines 23
4.3.7. Use of the DelayQueue for Scheduling Aperiodic Tasks Using 25

Sporadic Servers
4.4. Scheduling Aperiodic Tasks Using Sporadic Servers 26
4.5. Data Structures For Scheduling Sporadic Server Replenishments 29

4.5.1. The Replenishment Data Type 29
4.5.2. Sporadic Server Replenishment Queues 29
4.5.3. The SSUsed_Queue 29
4.5.4. SSCB Fields for Managing Replenishments 29
4.5.5. The Replenishment Control Block 30
4.5.6. Replenishment Data Structure Example 30

4.6. Scheduling Sporadic Server Replenishments 30
4.6.1. Tracking the Consumption of Sporadic Server Execution Time 31
4.6.2. Tracking the Active/Idle Status of Sporadic Server Priority Levels 34
4.6.3. Queueing Sporadic Server Replenishments 36

* 4.6.4. Replenishing Sporadic Servers 37
5. Implementation Options for Sporadic Servers in an Ada Runtime 39

5.1. Implementation Concerns 39
5.2. Specification of a Minimum Replenishment Amount 39
5.3. Scheduling Replenishments Only Upon Server Exhaustion 40
5.4. Eliminating the Tracking of Active/Idle Status of Priority Levels 40
5.5. Avoiding Suspension of Aperiodic Service due to Sporadic Server 41

Exhaustion
6. Summary 41

Acknowledgments 43

CMU/SEI-90-TR-6

References 45

0

0

0

0

0

0

0

0

CMU/SEI90-TR6
0

List of Figures
Figure 1: High Priority Sporadic Server Example 8
Figure 2: Equal Priority Sporadic Server Example 9
Figure 3: Medium Priority Sporadic Server Example 10
Figure 4: Exhausted Sporadic Server Replenishment 11

* Figure 5: Application-Level Sporadic Server 18
Figure 6: Specifications for the AperiodicTasks and 19

SSReplenishmentQueueManager Packages
Figure 7: Sporadic Server Runtime Data Structures 24
Figure 8: AddTaskToReadyQueue and 25

* RemoveTaskFromReady Queue
Figure 9: ExecuteNextTask 28
Figure 10: MarkSSConsumption 33
Figure 11: TrackActiveidleStatus 35
Figure 12: QueuePendingReplenishment 36
Figure 13: ReplenishSporadicServer 38

\/

Aoession For

NTIS CRA&I
DTIC TAB 0
Unannounced 0

• JustIflcatlon

By

Distribution/

Availability Codes
S[Avail and/or

Dist Speolal

CMU/SEI-90-TR-6 ill

0\

* Impleme1ing Sporadic Servers in Ada
Abstract. The purpose of this paper iS to present the data structures and algorithms
for implementing sporadic serversep-1,in real-time systems programmed in Ada. The
sporadic server algorithm is an extension of the rate monotonic scheduling algorithm
[6]. Sporadic servers are tasks created to provide limited and usually high-priority

service for other tasks, especially aperiodic tasks. Sporadic servers can be used to
* guarantee deadlines for hard-deadline aperiodic tasks and provide substantial improve-

ments in average response times for soft-deadline aperiodic tasks over polling tech-
niques. Sporadic server-also provide a mechanism for implementing the Period
Transformation techniqud [9]that can guarantee that a critical set of periodic tasks will
always meet their deadlines during a transient overload. Sporadic servers can also aid
fault detection and containment in a real-time system by limiting the maximum execu-

* tion time consumed by a task and detecting attempts to exceed a specified limit. This
paper discusses two types of implementations for the sporadic server algorithm: (1) a
partial implementation using an Ada task that requires no modifications to the Ada
runtime system and (2) a full implementation within the Ada runtime system. The over-
head due to the runtime sporadic server implementation and options for reducing this
overhead are discussed. The interaction of sporadic servers and the priority ceiling
protocol ftq is also defined.\,-,

1. Introduction
The purpose of this paper is to present two high-level designs, in the form of data structures and
algorithms, for implementing sporadic servers [131 in real-time systems programmed in Ada. The
first design presented is a partial implementation of sporadic servers using an application-level
Ada task. This implemntation requires no runtime system modifications. The second sporadic
server design is a full implementation of the sporadic server algorithm within an Ada runtime
system. The Real-Time Scheduling in Ada project at the Software Engineering Institute (SEI) has
designed a prototype implementation of the full sporadic server algorithm using a commercially
available Ada runtime system. This technical report summarizes our implementation experiences
to date and should be of interest to both Ada runtime implementors and real-time Ada application
developers.

The sporadic server algorithm, developed by the Advanced Real-Time Technology project at
Carnegie Mellon University, was designed as an extension of the rate monotonic algorithm for
periodic tasks [6] to provide general support for both soft- and hard-deadline aperiodic tasks. In
addition to providing a general scheduling solutions for aperiodic tasks, sporadic servers can be
used for other real-time scheduling problems. Sporadic servers provide a mechanism for im-
plementing the Period Transformation technique [9] for guaranteeing that a critical set of periodic

* tasks will always meet their deadlines during a transient overload. Producer/Consumer problems
in real-time systems can be handled in a straightforward manner using sporadic servers.
Sporadic servers can also aid fault detection and containment in a real-time system by limiting the
execution time consumed by a task to a maximum value and detecting attempts to exceed the
specified limit.

CMU/SEI-90-TR-6

0

1.1. Background
It is common practice to place a real-time task into one of four categories based upon its deadline
and its arrival pattern. If meeting a given task's deadline is critical to the system's operation, then
the task's deadline is considered to be hard. If a quick response for a real-time task is desirable,
but not absolutely necessary for correct system operation, then the task's deadline is considered
to be soft. Tasks in real-time systems that have no timing constraints, such as data logging and
backup, are classified as background tasks. Tasks with regular arrival times are periodic tasks. 0
Periodic tasks are commonly used to process sensor data and update the current state of the
real-time system on a regular basis. Periodic tasks used in control and signal processing applica-
tions typically have hard deadlines. Tasks with irregular arrival times are aperiodic tasks.
Aperiodic tasks are used to handle the processing requirements of events with nondeterministic
request patterns, such as operator requests. Aperiodic tasks typically have soft deadlines, but
some aperiodic tasks can have hard deadlines. Aperiodic tasks with hard deadlines are sporadic
tasks. In summary, we have:

" Hard-Deadline Periodic Tasks. A periodic task consists of a sequence of requests
arriving at regular intervals. A periodic task's deadline coincides with the end of its
period.

" Soft-Deadline Aperiodic Tasks. An aperiodic task consists of a stream of requests
arriving at irregular intervals. Soft deadline aperiodic tasks typically require a fast
average response time.

* Sporadic Tasks. A sporadic task is an aperiodic task with a hard deadline and a
minimum interarrival time (the amount of time between two requests) [7].

* Background Tasks. A background task has no timing requirements and no partic-
ular arrival pattern. Background tasks are typically assigned the lowest priority in the
system and, as such, the scheduling of background tasks will not be considered in
this paper.

A well understood algorithm for scheduling hard-deadline periodic tasks is Liu and Layland's rate
monotonic scheduling algorithm [6]. The rate monotonic algorithm assigns fixed priorities to tasks
based upon the rate of their requests (i.e., a task with a relfively short period is given a relatively
high priority). Under the assumptions of negligible context switching overhead and independent
tasks (i.e., tacC,,s that require no synchronization with one another), Liu and Layland proved that
this algorithm is the optimum, fixed-priority pre-emptive scheduling algorithm for periodic tasks
with hard deadlines. The rate monotonic algorithm provides real-time system designers with a
well defined algorithm for determining a priori the timing correctness of the system, a quality that
potentially offers a great reduction in the costs of system development, testing, and maintenance.
The rate monotonic algorithm has the advantage of low scheduling overhead since priorities are
statically assigned. The rate monotonic algorithm has also been shown to have a high average 0
schedulable utilization bound of 88% [4], and has been extended to handle transient overloads
[9], periodic tasks that share resources [10], and multiprocessors [3, 2, 81.

To handle soft-deadline aperiodic tasks, Lehoczky, Sha, and Strosnider created the the
deferrable server (DS) and priority exchange (PE) algorithms [5]. These algorithms are exten- 0
sions of the basic rate monotonic algorithm and they operate by creating a pool of high priority

2 CMU/SEI-90-TR-6

0

utilization that can be shared by soft-deadline aperiodic tasks. These algorithm. have been
* shown to greatly improve the average response time performance of soft-deadline aperiodic tasks

over polling and background service techniques [15]. However, Sprunt, Sha, and Lehoczky have
shown that these algorithms have some limitations [14]. The PE algorithm was shown to require
a prohibitively complex implementation. The schedulability bound for periodic tasks was shown
to be lower when using the DS algorithm than the PE algorithm. In other words, for a given

* periodic task set, the maximum server size (the ratio of the servers maximum execution time to
the servers period) for the DS algorithm is typically smaller than the maxonum PE server size. It
was also shown that although these algorithms can be used to provide support for some sporadic
tasks, no technique had been developed for guaranteeing the deadline for a sporadic task that is
shorter than the sporadic task's minimum interarrival time.

0
The Sporadic Server (SS) algorithm [14] was developed to overcome these limitations of previous
aperiodic server algorithms. Specifically, the SS algorithm was originally developed to meet the
following goals:

* provide good responsiveness for soft-deadline aperiodic tasks and guaranteed dead-
* lines for sporadic tasks while not compromising the timing constraints of any hard-

deadline periodic tas;,s

* attain a high degree of schedulable utilization

* allow for low implementation complexity and low runtime overhead

* provide a scheduling framework for real-time systems that are primarily composed of
* aperiodic tasks

Briefly, the specification and operation of a sporadic server is as follows (a complete description
of the SS algorithm is presented in Section 2). A sporadic server is specified by its period,
execution time, and priority. During system operation, a sporadic server preserves its execution
time until one of the tasks it is servicing becomes ready to execute, at which point the sporadic
server uses its available execution time to service the task. Service can continue as long as the
sporadic server has capacity available. Once the sporadic server's execution time is exhausted,
sporadic service is suspended until the consumed execution time is replenished. In its simplest
form, the sporadic server replenishes consumed execution time one sporadic server period after
the execution time is initially consumed.

Although the SS algorithm was developed for e,,'icing soft and hard-deadline aperiodic tasks,
sporadic servers can be also used to implement solutions for several other real-time scheduling
problems. The major uses of sporadic servers are:

* Improving Average Response Times for Soft-Deadline Aperiodic Tasks. A high
priority sporadic server can be created to service a set of soft-deadline aperiodic
tasks. Since the sporadic server preserves it-, high priority execution time until it is
needed, the sporadic server can provide immediate service for aperiodic tasks as
long as it has available execution time. This is a great improvement over polling or
background service techniques in which aperiodic tasks are either serviced at regular
intervals or whenever no other tasks are being serviced. Unlike polling or back-

* ground service, a sporadic server can usually provide service "on demand," and
therefore, provide a much better average response time.

CMU/SEI-90-TR-6 3
0

Guaranteeing Response Times for Sporadic Tasks. To guarantee the response
time for a sporadic task, a sporadic server can be created to provide exclusive ser-
vice to the sporadic task. The sporadic server's period and execution time are set
equal to the minimum interarrival time and worst case execution time, respectively, of
the sporadic task. In this manner, the sporadic server wit: always have execution
time available to service the sporadic task, even when the sporadic task arrives at its
maximum rate. Usually the deadline of the sporadic task is equal to or greater than
its minimum interarrival time and a rate monotonic priority is assigned to the sporadic
server (i.e., the priority is based upon the minimum interarrival time of the sporadic
task). For the cases when the sporadic task's deadline is shorter than its minimum
interarrival time, the priority of the sporadic server must be based upon the deadline
of the sporadic task, not its minimum interarrival time (i.e., a deadline monotonic
priority assignment should be used). The necessity of a deadline monotonic priority
assignment and its associated schedulability analysis is discussed in [14].

* Scheduling Producer/Consumer Tasks. In a real-time system a typical
producer/consumer scheduling problem occurs when a device can produce items at
a burst rate that is faster than the average rate at which those items can be con-
sumed. Since the burst production rate is grEater than the average consumption
rate, items are placed in a queue as they are produced. The consumer removes
items from the queue as soon as possible. The bursty production rate is charac-
terized by an event density, which is the maximum number of events that can occur 0
during any interval of time of a specified duration.

Two sporadic servers can be used to schedule the producer and consumer tasks.
The execution time of the sporadic server servicing the producer is set equal to the
maximum number of items that can arrive in a burst, multiplied by the time required
to queue each item. The execution time of the sporadic server servicing the con-
sumer is set equal to the the maximum number of items that can arrive in a burst
multiplied by the time required to consume each item. The period of both sporadic
servers is set equal to duration of time used to define the event density. The priority
of the consumer sporadic server is based upon its period (i.e., it is assigned its rate
monotonic priority). However, the priority of the producer sporadic server is based
up the minimum interarrival time of items. Thus, the producer sporadic server is
given a priority high enough to ensure that no items are lost and the consumer
sporadic server has a priority sufficient to guarantee that items are consu.ned at a
quick enough rate to prevent the queue from overflowing. With the characterization
of the bursty arrivals (event density) qnd the specification of the producer and con-
sumer sporadic servers, one can theii bound the maximum queue length and the
maximum time to consume any item.

Implementing the Period Transformation Technique. Transient overloads occur
when stochastic execution times for periodic tasks lead to a desired utilization
greater than the schedulable utilization bound of the task set. Under the rate
monotonic algorithm, periodic task priorities are assigned based upon their rate, not
necessarily upon task importance. Thus, an important task may be assigned a low
priority and, as such, may miss its deadline under transient overload conditions. For
these cases, the period transformation technique can be used to guarantee that a set
of critical periodic tasks will still meet their deadlines during a transient overload [9].
The basic idea of this technique is to force a critical task to be subdivided into tasks
with smaller execution times that are executed in sequential order at a higher rate.
The higher execution rate will give the task a high enough priority to allow it to
execute even during transient overloads.

A sporadic server can be ued to implement the period transformation technique. 0
The execution time and period of the sporadic server are set equal to the execution
budget and period of the transformed periodic tasK. Since the sporadic server will

4 CMU/S EI-90-TR-6

I I I " 1 ' 1

suspend service once its available execution time is exhausted, the desired execu-
tion pattern for the periodic task is obtained. Note that this approach requires no
special modifications to the code for the periodic task.

Fault Detection and Containment. A hardware fault or programming bug can cause
a task to execute longer than has been allowed for in the schedulability analysis.
Typically, the only mechanism used to detect these types of faults checks if the task
has not been completed by its deadline. However, this allows the task not only to
exhaust its own budget of execution time but also to consume part of the execution
time budgets of other lower priority tasks, possibly causing them to miss their dead-
lines. By servicing a periodic task using a sporadic server with an execution time,
period, and priority identical to that of the periodic task, the periodic task will be
restricted to consuming at most its execution time budget. If the sporadic server's
budget is ever completely exhausted and the periodic task is still ready to execute,
the sporadic server has detected a fault. Since the sporadic server will suspend the
execution of the periodic task once all its execution time has been consumed, the
errors resulting from any fault that has caused the periodic task execute longer than
it should are contained to the faulty task and not allowed to influence the execution of
other tasks.

Note that the use of sporadic servers to implement the period transformation technique or to
improve fault detection and containment requires that the full sporadic server algorithm be imple-
mented in the Ada runtime system. This is necessary because only within the runtime system
can sporadic service be suspended once the server's execution time has been exhausted,
regardless of whether or not the task being serviced has completed execution. For sporadic
servers implemented at the application level (see Section 3), sporadic service can only be
suspended once the task being serviced has completed execution.

The next section gives a complete description of the SS algorithm using examples for soft-
deadline aperiodic tasks and discusses the interaction of the SS algorithm and the priority ceiling
protocol (101 for scheduling periodic tasks that share data. Section 3 describes an application
level implementation of the SS algorithm as an Ada task that requires no modifications to Ada or
its runtime system. Section 4 presents the data structures and algorithms necessary for a full
Ada runtime implementation of sporadic servers. Section 6 presents a summary.

2. The Sporadic Server Algorithm
The SS algorithm creates a high priority task for servicing aperiodic tasks. The SS algorithm
preserves its server execution time at its high priority level until an aperiodic request occurs. The
SS algorithm replenishes its server execution time after some or all of the execution time is
consumed by aperiodic task execution. This method of replenishing server execution time sets
the SS algorithm apart from the previous aperiodic server algorithms [5, 14] and is central to
understanding the operation of the SS algorithm.

The following terms are used to explain the SS algorithm's method of replenishing server execu-
tion time:

PS Represents the task priority level at which the system is currently executing.
Pi One of the priority levels in the system. Priority levels are consecutively

CMU/SEI-90-TR-6 5

numbered in priority order with P1 being the highest priority level, P2 being
the next highest, and so on.

Active This term is used to describe a priority level. A priority level, Pi, is considered
to be active if the current priority of the system, Ps, is equal to or higher than
the priority of Pi.

Idle This term has the opposite meaning of the term active. A priority level, Pi, is
idle if the current priority of the system, PS, is lower than the priority of Pi-

RT i Represents the replenishment time for priority level Pi. This is the time at
which consumed execution time for the sporadic server of priority level Pi will
be replenished. Whenever the replenishment time, RT i, is set, it is set equal
to the current time plus the period of Pi.

Determining the schedule for replenishing consumed sporadic server execution time consists of

two separate operations: (1) determining the time at which any consumed execution time can be
replenished and (2) determining the amount of execution time (if any) that should be replenished.
Once both of these operations have been performed, the replenishment can be scheduled. The
time at which these operations are performed depends upon the available execution time of the

sporadic server and upon the active/idle status of the sporadic server's priority level. The rules

for these two operations are stated below for a sporadic server executing at priority level Pi:

1. If the server has execution time available, the replenishment time, RT i, is set when
priority level P, becomes active. Otherwise, the server capacity has been ex-
hausted and RT i cannot bo set until the server's capacity becomes greater than
zero and Pi is active. In either case, the value of RT i is set equal to the current time
plus the period of Pi.

2. The amount of execution time to be replenished can be determined when either the
priority level of the sporadic server, Pi, becomes idle or when the sporadic server's
available execution time has been exhausted. The amount to be replenished at RT i
is equal to the amount of server execution time consumed since the last time at
which the status of Pi changed from idle to active.

2.1. SS Algorithm Examples
The operation of the SS algorithm will be demonstrated with four examples: a high priority
sporadic server, an equal priority sporadic server (i.e., a sporadic server with a priority that is
equal to the priority of another task), a medium priority sporadic server, and an exhausted
sporadic server. Figures 1-4 present the operation of the SS algorithm for each of these ex-
amples. The upper part of these figures shows the task execution order and the lower part shows
the sporadic server's capacity as a function of time. Unless otherwise noted, the periodic tasks in

each of these figures begin execution at time = 0.

Figure 1 shows task execution and the task set characteristics for the high priority sporadic server

example. In this example, two aperiodic requests occur. Both requests require 1 unit of execu-
tion time. The first request occurs at t = 1 and the second occurs at t = 8. Since the sporadic
server is the only task executing at priority level P1 (the highest priority level), P1 becomes active
only when the sporadic server services an aperiodic task. Similarly, whenever the sporadic ser-

6 CMU/SEI-90-TR-6

ver is not servicing an aperiodic task, P1 is idle. Therefore, RT1 is set whenever an aperiodic task
is serviced by the sporadic server. Replenishment of consumed sporadic server execution time
will occur one server period after the sporadic server initially services an aperiodic task.

The task execution in Figure 1 proceeds as follows. For this example the sporadic server begins
with its full execution time capacity. At t = 0, -r1 begins execution. At time = 1, the first aperiodic
request occurs and is serviced by the sporadic server. Priority level P1 has become active and
RT1 is set to 1 + 5 = 6. At t = 2, the servicing of the first aperiodic request is completed,
exhausting the server's execution time, and P1 becomes idle. A replenishment of 1 unit of execu-
tion time is set for t = 6 (note the arrow in Figure 1 pointing from t = 1 on the task execution
timeline to t = 6 on the server capacity timeline). The response time of the first aperiodic request
is 1 unit of time. At t = 3, 'r1 completes execution and T2 begins execution. At t = 6, the first
replenishment of server execution time occurs, bringing the server's capacity up to 1 unit of time.
At t = 8, the second aperiodic request occurs and P1 becomes active as the aperiodic request is
serviced using the sporadic server's execution time. RT1 is set equal to 13. At t = 9, the
servicing of the second aperiodic request completes, P1 becomes idle, and 'r2 is resumed. A
replenishment of 1 unit of time is set for t = 13 (note the arrow in Figure 1 pointing from t = 8 on
the task execution timeline to t = 13 on the server capacity timeline). At t = 13, the second
replenishment of server execution time occurs, bringing the server's capacity back up to 1 unit of
time.

Figure 2 shows the task execution and the task set characteristics for the equal priority sporadic
server example. As in the previous example, two aperiodic requests occur and each requires 1
unit uf execution time. The first aperiodic request occurs at t = 1 and the second occurs at t = 8.
The sporadic server and ', both execute at priority level P1 and Tr2 executes at priority level P2.
At t= 0, r1 begins execution, P1 becomes active, and RT1 is set to 10. At t = 1, the first aperiodic
request occurs and is serviced by the sporadic server. At t = 2, service is completed for the first
aperiodic request and ri resumes execution. At t = 3, 'r completes execution and r2 begins
execution. At this point, P1 becomes idle and a replenishment of 1 unit of server execution time
is set for t = 10. At t = 8, the second aperiodic request occurs and is serviced using the sporadic
server, P1 becomes active, and RT1 is set to 18. At t = 9, service is completed for the second
aperiodic request, 'r2 resumes execution, P, becomes idle, and a replenishment of 1 unit of
server execution time is set for t = 18. At t = 10, r1 begins execution and causes P1 to become
active and the value of RT1 to be set. However, when "i completes at t = 12 and P1 becomes
idle, no sporadic server execution time has been consumed. Therefore, no replenishment time is
scheduled even though the priority level of the sporadic server became active.

Figure 2 illustrates two important properties of the sporadic server algorithm. First, RT can be
determined from a time that is earlier than the request time of an aperiodic task. This occurs for
the first aperiodic request in Figure 2 and is allowed because P1 became active before and
remained active until the aperiodic request occurred. Second, the amount of execution time
replenished to the sporadic server is equal to the amount consumed.

Figure 3 shows the task execution and the task set characteristics for the medium priority
sporadic server example. In this example, two aperiodic requests occur and each requires 1 unit

CMU/SEI-90-TR-6 7

Aperiodic Aperiodic Soai
Request #1 Request #2 SporadicServer

Task1

Task
Execution Task 2

04 6 8 1012 14 16 18 20

Sporadic
Server

Capacity
1.0

0 2 4 6 8 10 12 14 16 18 20

Task Exec Time Period Utilization

SS 1 5 20.0%
2 10 20.0%

12 6 14 42.9%

Figure 1: High Priority Sporadic Server Example

of execution time. The first request occurs at t = 4.5 and the second at t = 8. The sporadic server

executes at priority level P2, between the priority levels of 'Ci (P1) and 1:2 (P3). At t = 0, T, begins

execution. At t = 1, 1:1 completes execution and T2 begins execution. At t = 0, RT2 is set to 10

but, since no sporadic server execution time is consumed before P2 becomes idle at t = 1, no

replenishment is scheduled. At t = 4.5, the first aperiodic request occurs and is serviced using

the sporadic server making priority level P2 active. At t = S, T, becomes active and pre-empts the

sporadic server. At this point all priority levels are active since P1 is active. At t - 6, r completes

execution, P1 becomes idle, and the sporadic server is resumed. At t - 6.5, service for the first 0

aperiodic request is completed, 1r2 resumes execution, and P2 becomes idle. A replenishment of

1 unit of sporadic server execution time is scheduled for t = 14.5. At t - 8, the second aperiodic

request occurs and consumes 1 unit of sporadic server execution time. A replenishment of 1 unit

of sporadic server execution time is set for t = 18.

Figure 3 illustrates another important property of the sporadic server algorithm. Even if the

sporadic server is pre-empted and provides discontinuous service for an aperiodic request (as

occurs with the first aperiodic request in Figure 3), only one replenishment is necessary. Pre-

emption of the sporadic server does not cause the priority level of the sporadic server to become

idle, thus allowing several separate consumptions of sporadic server execution time to be

replenished together. Note that one replenishment for the consumption of sporadic server execu-

8 CMU/SEI-90-TR-6

I i I

Aperiodic Aperiodic Sporadic
Request #1 Request #2 Server

TaskE
Task

* Execution
Task 2

4 6 8 12 14 16 18 20

Sporadic
Server 2

Capacity

0 2 4 6 8 10 12 14 16 18 20

Task Exec Time Period Utilization

SS 2 10 20.0%
2 10 20.0%

T2 6 14 42.9%

Figure 2: Equal Priority Sporadic Server Example

tion time resulting from both aperiodic requests in Figure 3 is not permitted because the priority
level of the sporadic server became idle between the completion of the first aperiodic request and
the initial service of the second aperiodic request.

The final sporadic server example, presented in Figure 4, illustrates the application of the
replenishment rules stated in Section 2 for a case when the sporadic server's execution time is
exhausted. Figure 4 shows that even though the sporadic server's priority level may be active
before the sporadic server actually begins servicing an aperiodic request, the replenishment time
must be determined from the time at which the sporadic server's capacity becomes greater than
zero. In Figure 4, the sporadic server has a priority less than periodic task 'r1 and greater than
periodic task '2. The initial period for -r begins at time = 2 and the initial period for C2 begins at t
=0.

Task execution in Figure 4 proceeds as follows. At t = 0, r2 becomes ready and begins execu-
tion. At t = 1, an aperiodic request occurs that requires 3 units of execution time. The sporadic
server pre-empts 2 and begins servicing the aperiodic request. While the aperiodic request is
being serviced T, becomes ready at t = 2 and pre-empts the sporadic server. At t = 3, -r1
completes execution and servicing of the aperiodic request continues. At t = 4, the sporadic
server exhausts its execution time capacity and T2 resumes execution. A replenishment of 2 units

CMU/SEI-90-TR-6 9

Aperiodic Aperiodic Sporadic 0
Request #1 Request #2 Server

Task
Ts

Execution T s 2Task 2

0 2 4 6 1 14 16 18 20

Sporadic 3

Server
Capacity

0 2 4 6 8 10 12 14 16 18 20

Task Exec Time Period Utilization

T, 1.0 5 20.0%
SS 2.5 10 25.0%
T2 6.0 14 42.9%

Figure 3: Medium Priority Sporadic Server Example

of sporadic server execution time is scheduled for t = 11. At t = 6, -c1 pre-empts "2 and executes
until t = 7 when -2 resumes execution. At t = 10, c, again pre-empts T2 and begins execution.
Note that at t = 10 (as was also the case for t = 6), all priority levels become active because the 0
highest priority task is now executing. At t = 11, rl completes execution and the replenishment of
2 units of sporadic server execution time occurs allowing the servicing of the aperiodic request to
continue. The aperiodic request is completed at t = 12 and 'r2 resumes execution. A second
replenishment for consumed sporadic server execution time must now be scheduled. However,
the replenishment time is not determined from t = 10, the point at which the sporadic server's 0
priority level became active, because at t - 10 the sporadic server's capacity was zero. The
replenishment time is instead determined from the t = 11, the point at which the sporadic server's
capacity became greater than zero.

2.2. Sporadic Servers and Priority Inheritance Protocols
In this section we define the interaction of sporadic servers and the priority inheritance protocols
developed by Sha, Rajkumar, and Lehoczky infl]. The schedulability impact of servicing
aperiodic tasks that share data using priority inheritance protocols is also discussed.

Mok [81 has shown that the problem of determining the schedulability of a set of periodic tasks
that use semaphores to enforce exclusive access to shared resources is NP-hard. The

10 CMU/SEI-90-TR-6

i I II I0

Aperiodic
Aperiodic Service Sporadic
Request Completed Server

Tasakk

* Execution Task 2
STask 2

0 2 4 6 8 10 1 14 16 18 20 22

Sporadic 2
Server

Capacity

0 2 4 6 8 10 12 14 16 18 20 22

Task Exec Time Period Utilization

T, 1 4 25%
SS 2 10 20%

* r2 10 40 25%

Figure 4: Exhausted Sporadic Server Replenishment

semaphores are used to guard critical sections of code (e.g., code to insert an element into a
shared linked list). To address this problem for rate monotonic scheduling, Sha, Rajkumar, and

* Lehoczky [11] have developed priority inheritance protocols and derived sufficient conditions un-
der which a set of periodic tasks that share resources using these protocols can be scheduled.
The priority inheritance protocols require that the priority of a periodic task be temporarily in-
creased if it is holding a shared resource that is needed by a higher priority task. Since both
sporadic servers and the priority inheritance protocols manipulate the priorities of tasks, it is

• necessary to define the interaction of these two scheduling techniques.

The priority inheritance protocols manipulate the priorities of tasks that enforce mutual exclusion
using semaphores in the following manner.1 Consider the case of a task, TA, that is currently
executing and wants to lock a semaphore and enter a critical section. The priority inheritance
protocols will select one of the following two sequences of task execution:

1. Task TA is allowed to lock the semaphore and enter the critical section. During the
critical section TA executes at its assigned priority.

• T'The description here of the operation of the priority inheritance protocols is very simplistic but sufficient for describing
the interaction of sporadc servers and the priority inheritance protocols. For a better description of the priority inheritance
protocols, the reader is referred to [111.

CMU/SEI-90-TR-6 11

2. Task rA is not allowed to lock the semaphore and is blocked from executing. The
lower priority task, 'ke, that is causing the blocking then inherits the priority of 'CA and
continues execution. The lower priority task executes until the lock is released and
then rA gets the lock and executes.

We are concerned with the problem of the interaction of priority inheritance protocols and a
sporadic server for the case when an aperiodic task that is using its sporadic server wants to lock
a semaphore and enter a critical section. The interactions to be defined concern the inheritance 0
of the sporadic server's priority and the consumption of sporadic server execution time. In order
to preserve the benefits of the priority inheritance protocols it is necessary to retain its rules of
operation without modification. Thus, a lower priority task that is blocking an aperiodic task from
entering its critical section inherits the priority of the aperiodic task's sporadic server. However,
two possibilities exist for the consumption of sporadic server execution time:

1. Allow the task that inherits the sporadic server's priority to consume the sporadic
server's execution time.

2. Do not allow the task that inherits the sporadic server's priority to consume the
sporadic server's execution time.

The policy selection affects the efficiency and complexity of sporadic server implementations. 0

A comparison of the implementation effects of these two policy choices shows that the first policy
results in a more complex implementation that requires more overhead to manage sporadic ser-
ver execution time. The first policy requires that the implementation maintain more state to
manage the sporadic server's execution time. With the first policy, any task that can block the 0
execution of the aperiodic task can then consume the execution time of the aperiodic task's
sporadic server. This expands the execution time of potential users of the sporadic server
beyond the set of aperiodic tasks associated with the sporadic server, and this makes the con-
ditional tests in the implementation more complex and less efficient. The first policy choice would
also require that the implementation handle the case when the sporadic server's execution time is S
exhausted by a task that has inherited the priority of the sporadic server. In this case, all tasks
that have inherited the sporadic server's priority must return to the priority they had before inherit-
ing the sporadic server's priority. Changing these priorities can be a complex operation espe-
cially when nested critical sections are involved. Also, once these priority changes have been
made it may be necessary to re-evaluate the priority inheritance protocols because the priority of 0
one or more tasks has changed during the middle of a critical section.

The better choice for the policy governing the consumption of sporadic server execution time is
not to allow tasks that inherit the sporadic server's priority to consume the sporadic server's
execution time. This allows the implementation of support for sporadic servers to be largely
independent of the implementation of support for the priority inheritance protocols. The resulting
independence of the sporadic server and priority inheritance protocol implementations avoids the
problems associated with the first policy choice.

Now that the interaction of sporadic servers and the priority inheritance protocols has been de-
fined, we need to discuss the schedulability impact of using a sporadic server to service an

aperiodic task that shares data with a periodic task. To describe the schedulability impact we will

2 CMU/SEI-90-TR-6

use two examples, each describing the schedulability of one periodic task and one aperiodic task.
The periodic and aperiodic tasks share data using the priority ceiling protocol developed by Sha,
Rajkumar, and Lehoczky [10]. In the first example, the aperiodic task executes at a priority lower
than the periodic task. In the second example, a high-priority sporadic server is created to ser-
vice the aperiodic tasks.

To demonstrate the schedulability impact of the sporadic server we will use the following equation
developed in [10]:

C1 C2 +C+ <)
T 1 +T 2 n -+ Ti Ti(

where Ci and Tj are respectively the execution time and period of task r and 6, is the worst-case
blocking time for task r. This equation was derived using the worst case utilization bound equa-
tion for scheduling periodic tasks developed by Liu and Layland in [6] which, under the absolute
worst case conditions, provides a sufficient condition for determining schedulability of a rate
monotonic priority assignment.

For our examples, the blocking term Bi will be used to represent the maximum amount of time
that the aperiodic task can block the execution of the periodic task, due to the possibility that the
aperiodic task may have already obtained exclusive access to the shared data when the periodic
task makes its request for the shared data. Note that "blocking time" is different from "pre-
emption time". Blocking occurs when a lower priority task blocks the execution of a higher priority
task. Pre-emption occurs when a higher priority task prevents the execution of a lower priority
task. The above equation provides a sufficient test to determine if the sum of the-pre-emption
time, blocking time, and execution time for each task is less than its deadline. The examples will
show that the addition of a high-priority sporadic server to service the aperiodic task increases the
pre-emption time imposed upon the periodic task and does not decrease the amount of blocking
time possible for the periodic task (unless special provisions are made as described later).

For the examples, we assume the following:

" The operations to be performed by either the periodic or aperiodic task upon the
shared data take, at most, 2 units of time.

" The periodic task has a maximum execution time of 8 units (Cp = 8) and a period of
20 units (Tp = 20). This maximum execution time includes the time to operate upon
the shared data, assuming no blocking occurs. The periodic task is the only task
with a hard deadline.

" The execution time and arrival pattern. of the aperiodic task are not important for
these examples. However, whenever the aperiodic task executes it requires access
to the shared data and, once access is obtained, the aperiodic task may block the
periodic task from executing.

" The sporadic server (used only in the second example) has an execution time of 3
units (Css = 3) and a pe;iod of 10 units (Tss = 10).

The first example is composed of the periodic task executing at a higher priority than the
aperiodic task. The schedulability criterion for the periodic task using equation 1 is shown below.

CMU/SEI-90-TR-6 13

Cp Bp

p TP- 1 (2 1 -

8 21

10 <

As can be seen from the above evaluation, the periodic task can be guaranteed to meet its
deadline. This evaluation can be more simply described by noting that the maximum interval
from the initiation of the periodic task to its completion consists of the its maximum execution time
of 8 units plus the maximum amount of time that it can be blocked waiting for access to the 0
shared data. Thus, the periodic task can take no more than 10 units of time to complete, and,
therefore, will always meet its deadline of 20 units. Note that in this example, the only effect the
aperiodic task has upon the schedulability of the periodic task is due to blocking.

The second example is composed of a sporadic server with a high priority, the periodic task
executing at a medium priority, and the aperiodic task executing either at the high priority of the
sporadic server or at a low priority. To determine the schedulability of a task set using a sporadic
server, we treat the sporadic server as an equivalently sized periodic task. The use of Equation 1
to determine the schedulability of the second example proceeds as follows:

CSS< 1(21-1)
Tss -

3
10 TO •

T- + T + -<:52(22-1).Tss TP Tp-

3 + 8 + 2 0.83

8 < 0.83
10

Since both the inequality for the sporadic server and the inequality for the periodic task are
satisfied, the task set is schedulable. However, notice that the inequality for the periodic task 0
involves a term for pre-emption by the aperiodic task (for the case when it is executing at the high
priority of its sporadic server) and a term for blocking by the aperiodic task (for the case when the
aperiodic task is executing at low priority and has locked the shared data). This is necessary
because it is possible for the aperiodic task to be executing at its sporadic servers high priority to
exhaust the sporadic server's execution time just after after locking the shared data. In this case, S
the aperiodic task can both pre-empt and block the execution of the periodic task. A periodic task

14 CMU/SEI-90-TR-6

that shares data with an aperiodic task that uses a sporadic server must be able to withstand both

the pre-emption time of the sporadic server and the blocking of time of the aperiodic task execu-
tion at low priority. Referring to the equations from both examples, one can see that the addition

of a high-priority sporadic server can increase the pre-emption time imposed upon a periodic task
while not decreasing the blocking time. This "double hit" in terms of schedulability for the periodic

task is a drawback of using sporadic servers to provide high priority service to aperiodic tasks that
share data with periodic tasks.

Earlier we mentioned that one could use a sporadic server to decrease the amount of blocking
time experienced by a periodic task that shares data with an aperiodic task. This can be accom-
plished if the aperiodic task is not allowed to execute at low priority and always completes and
releases the shared data before its sporadic server runs out of execution time. If the aperiodic
task only executes at its sporadic server's high priority and the sporadic server never suspends
aperiodic service when the shared data is locked by the aperiodic task, then the aperiodic task
can never block the periodic task. If the application characteristics allow the creation of a
sporadic server that can make these guarantees, then the blocking term can be removed from the
schedulability inequality for periodic task, improving its schedulability. Implementation considera-
tions for such a sporadic server are discussed in Section 5.5.

3. Implementing a Sporadic Server with an Application-Level
Ada Task

This section describes an implementation of a sporadic server as an Ada task. This implemen-
tation requires no changes to the Ada runtime system. However, since an Ada task cannot
directly monitor the execution time it consumes or alter its priority, the sporadic server algorithm
must be simplified and the following assumptions and restrictions must be made:

1. The worst-case execution time of each aperiodic task must be known. Each time
an aperiodic task uses its sporadic server, it is assumed that the aperiodic task
consumes an amount of sporadic server execution time equal to the aperiodic
task's worst-case execution time.

2. Aperiodic tasks that use sporadic servers must rely exclusively upon the sporadic
server to execute. In other words, an aperiodic task cannot execute both as a low
priority task when the sporadic server's capacity is exhausted or when the proces-
sor is idle and then as high priority task when some sporadic server capacity is
replenished (as is possible in the full Ada runtime implementation described in Sec-
tion 4).

3. A sporadic server is not allowed to service an aperiodic task unless it has an avail-
able execution time greater than or equal to the worst-case execution time of the
aperiodic task. When the sporadic server does not have enough capacity to com-
pletely service an aperiodic task, the aperiodic task must wait until the sporadic
server's available execution time is replenished to a value greater than or equal to
the worst-case execution time of the aperiodic task. This is necessary because
once the sporadic server task begins servicing an aperiodic task, it has no way of
suspending that service when its available execution time is exhausted.

4. Since it is not possible for the sporadic server task to track the active/idle status of
the priority levels in the system, it is necessary to use a simplified version of the

CMU/SEI-90-TR-6 15

sporadic server's replenishment policy (discussed in Section 5.4). This policy re-
quires that consumed execution time be replenished one sporadic server period
after sporadic service is initiated.

The basic mechanism used to implement a sporadic server task is Ada's selective wait with a
delay alternative (SWDA). Each accept statement of the SWDA corresponds to one of the
aperiodic tasks that can request service from the sporadic server. To request service, an
aperiodic task executes a call to the corresponding accept statement in the sporadic server.
Each of the accept statements in the sporadic server's SWDA has a guard that compares the
available execution time of the sporadic server to the worst-case execution time of the aperiodic
task. If the sporadic server has enough execution time to completely service the aperiodic task,
then the corresponding select alternative is open. The delay statement of the SWDA is used to
schedule replenishments for consumed sporadic server execution time. If any replenishments 0
are pending for the sporadic server, then the delay alternative is open and the delay will expire
when the next replenishment should occur. If upon exiting the select statement, it is determined
that an aperiodic task has consumed some of the sporadic server's execution time, then a
replenishment is scheduled to replenish the consumed execution time.

The sporadic server's replenishments are managed using the record variable, Next_- Rep, and a
queue of replenishment records referred to as the replenishment queue. If any replenishments
are pending, then NextRep holds the replenishment time and amount for the next replenish-
ment. If the sporadic server has more than one pending replenishment, all the pending replenish-
ments except Next-Rep are stored in FIFO order on the replenishment queue.

The pseudo-code for the Ada task implementation of a sporadic server is presented in Figure 5.
The Sporadic-Service package body relies upon an application-level Ada package describing the
worst-case execution times and service procedures for the aperiodic tasks and an application-
level Ada package for the sporadic server's replenishment queue management. The specification
for these packages, AperiodicTasks and SS_ReplenishmentQueue_Manager, are presented in 0
Figure 6.

The task Sporadic_Server presented in Figure 5 consists of an infinite loop. The loop contains
the SWDA (as described above) and code to manage the replenishing of the sporadic server's
execution time. The SWDA supports N aperiodic tasks with N accept statements. Each accept 0
statement has a guard that will open it if the sporadic server has enough execution time to service
its corresponding aperiodic task. The body of each accept statement of the SWDA performs the
following operations:

1. The time at which service begins for the aperiodic task is remembered by setting
ExecBeginTime to the current time. 0

2. The aperiodic task is serviced by the sporadic server.

3. ConsumedExecTime is set to the maximum execution time of the aperiodic task.

The delay alternative of the SWDA in Figure 5 is used to replenish the sporadic server's execu-
tion time. If any replenishments are pending for the sporadic server (indicated by the boolean
variable, RepsArePending), the delay alternative will be open. When replenishments are pend-

16 CMU/SEI-90-TR-6

ing for the sporadic server, the record variable, Next Rep, holds the amount and replenishment

time of the next replenishment. When body of delay alternative is executed a replenishment of

consumed sporadic server execution time is due. If the replenishment queue is empty, then the

replenishment due is the only outstanding replenishment and, therefore, the sporadic server is

brought to full capacity and the RepsArePending is set to FALSE. If the replenishment queue

is not empty, the replenishment amount in Next-Rep is added to Ave.&ableExec_Time and the

next replenishment is dequeued from the replenishment queue and stored in Next-Rep.

The code after the SWDA is used to decrement the sporadic server's available execution time

and schedule replenishments for the consumed execution time. This code is executed after one

of the accept alternatives is taken because the value of ConsumedExecTime will then be

greater than zero. This code first decrements the Available_ExecTime of the sporadic server by

ConsumedExecTime. It is then necessary to schedule a replenishment for the consumed

execution time. If any replenibiments are pending, then the record variable, NextRep, already
holds the information for the next replenishment and, therefore, the replenishment for the most

recently consumed sporadic server execution time must be placed in the replenishment queue. If
no replenishments are pending, then the info, mation for this replenishment is placed in Next-Rep

and the RepsAre_- Pending boolean variable is set to TRUE. The last part of this code resets the

value of ConsumedExecTime to zero.

The operation of the delay alternative of the SWDA can be different from what is desired. If the

evaluatior of the delay expression is pre-empted after reading the clock but before executing the

delay, the effect will be to make the delay longer than desired [1]. This will, at best, result in
wasted server capacity because the server will be replenished at a later time than desired. At

worst, a pre-emption during the evaluation of the delay expression will result in missing a desired
response time because server capacity that should be available at a given time will not be. A

solution to this problem is to support a delay until[1] capability for the selective wait statement.
* The delayuntil statement presents an absolute time to the runtime system instead of a relative

duration, and, therefore, does not suffer from the pre-emption problem described above.

CMU/SEI-90-TR-6 17S

with Calendar; use Calendar;
with AperiodicTasks; use AperiodicTank.;
with SS ReplenishmentQueue_Manager; use SSReplenishmentQueueManager;

package body SporadicService is

SSPeriod constant duration Period of the Sporadic Server;
SS MaxExecTime constant duration = Maximum Execution Budget of the Sporadic Server

AvailableExecTime duration := SSMaxExecTime;
ConsumedExecTime duration 0.0;

Exec BeginTime time;
Next Rep replenishment;
Reps ArePending boolean := FALSE;

task body SporadicServer is
begin

loop
select

when AvailableExecTime >- AperiodicTask1MaxExecTime =>
accept Obtain ServiceForAperiodicTask_1;

ExecBegin Time := Clock;
Service Aperiodic_T ask 1;
Consumed_ExecTime :- MaxExecTime AperiodicTask_1;

end ObtainServiceForAperiodicTask_1;

or ..

or
when Available Exec Time >= AperiodicTask N Max Exec Time >

accept ObtainServiceForAperiodic_Task_N;

ExecBegin Time :- Clock;
ServiceAperiodicTaskN;
ConsumedExecTime := MaxExec_TimeAperiodicTaskN;

end ObtainServiceFor_AperiodicTask_N;

or when Reps Are Pending => delay NextRep.RepTime - Clock;

if ReplenishmentQueue_Empty then
AvailableExecTime := SSMaxExecTime;
RepsArePending :- FALSE;

else
AvailableExecTime := AvailableExecTime + Next Rep.Rep Amount;
DequeueReplenishment (NextRep);

end if;

end select;

if ConsumedExecTime > 0.0 then

AvailableExec Time := AvailableExecTime - ConsumedExecTime;

if Reps_Are_Pending then
EnqueueReplenishment((RepTime => ExecBeginTime + SS Period,

RepAmount -> ConsumedExec Time));
else

Next_Rep.RepTime :- ExecBeginTime + SS Period;

Next_Rep.Rep Amount := ConsumedExecTime;
RepsAre Pending :- TRUE;

end if;

ConsumedExc-Time := 0.0;

end if;

end loop;
end Sporadic Server;

end Sporadio Service;

Figure 5: Application-Level Sporddic Sorver
18 CMU/SEI-90-TR-6

package AperiodicTasks is

Aperiodic Task 1 Max Exec Time : constant duration max exec time;
procedure ServiceAperiodicTask_l;

AperiodicTask_2_MaxExecTime : constant duration := maxexectime;
procedure ServiceAperiodic Task_2;

AperiodicTaskNMaxExecTime : constant duration = max exec time;
procedure ServiceAperiodic Task_N;

end AperiodicTasks;

package SSReplenishmentQueueManager is

type replenishment is record
RepTime time;
RepAmount duration;

end record;

procedure EnqucueReplenishment(NewReplenishment in replenishment);

procedure DequcueReplenishment (Old Replenishment out replenishment);

function ReplenishmentQueueEmpty return boolean;

end SSReplenishmentQueueManager;

Figure 6: Specifications for the AperiodicTasks and
SSReplenishmentQueueManager Packages

4. A Full Implementation of Sporadic Servers in an Ada Runtime
System

This section describes an impl.:mentation of sporadic servers within an Ada runtime system. This
is a full implementation in that no simplification of the algorithm described in Section 2 is used, as
was necessary for the Adp *ask implementation described in the previous section. This section
begins with a brief description of how sporadic servers can be implemented within the existing
semantics of Ada. This is followed by a discussion of the runtime data structures that are as-
sumed to be available within an existing Ada runtime system. Next the discussion of the sporadic
server implementation is broken into two parts. First, the data structures and procedures used to
schedule aperiodic tasks that use sporadic servers are presented. Second, the data structures
and procedures for scheduling sporadic server replenishments are described. The next section
describes the sources of overhead in this implementation of sporadic servers and discusses
implementation options for reducing the overhead.

CMU/SEI-90-TR-6 19

4.1. Sporadic Servers and Ada Semantics
An Ada runtime system can support sporadic servers for aperiodic tasks within the semantics of 0
Ada. Ada does not specify any specific scheduling discipline for tasks with undefined priorities.
As discussed by Sha and Goodenough in [12], if the priority of a task is not assigned using
pragma PRIORITY then the Ada runtime system is free to employ any algorithm for deciding
which eligible task to run. Thus, an Ada runtime system can use the sporadic server algorithm to
provide high priority service foi aperiodic tasks. Implementation dependent pragmas and/or rur- •
time calls can be used to specify scheduling priorities for tasks and the information necessary to
create and use sporadic servers.

4.2. Runtime Data Structures for Sporadic Servers
The implementation of sporadic servers within an Ada runtime relies upon these existing data 0
structures in the Ada runtime:

" TaskControlBlock (TCB) - a record containing all the information necessary to
schedule and execute an Ada task.

" Task_Ready Queue - a priority-ordered list of tasks that are ready to execute. The
task at the head of the TaskReadyQueue is always the currently executing task. 1
Whenever a scheduling decision is made that changes the task at the head of the
TaskReadyQueue, the task placed at the head of the TaskReady-Queue is se-
lected as the next task to execute. Tasks of equal priority are managed using a
FIFO policy.

" Delay Queue - a time-ordered queue of tasks that are suspended waiting for a
timing event to occur (the DelayQueue is typically used to implement the Ada delay 0
statement).

In addition to the above data structures, new data structures and modifications to existing data
structures are necessary to support a complete implementation of sporadic servers. These run-
time modifications are needed to support the two primary operations of sporadic servers: (1)
scheduling aperiodic tasks that will consume sporadic server execution time and (2) scheduling
replenishments for consumed sporadic server execution time. This section breaks the discussion
of an Ada runtime implementation of sporadic servers into these two categories. As the data
structures for each category have been defined, pseudo-code for the corresponding procedures
that manipulate the data structures is presented and discussed. 0

4.3. Data Structures for Scheduling Aperiodic Tasks that Use Sporadic
Servers

4.3.1. Sporadic Server Queues
A full implementation of sporadic servers in an Ada runtime system allows multiple sporadic 0
servers to be created and used concurrently. To manage multiple sporadic servers and aid in the
scheduling aperiodic tasks that will use their sporadic server's execution time, several sporadic
server queues are maintained by the runtime system. The elements of these queues are pointers
to Sporadic Server Control Blocks (SSCBs) which are discussed in Section 4.3.3. The sporadic
server queues are listed below: 0

, SSReady Queue - a priority-ordered queue of SSCBs that have both aperiodic
tasks ready to execute and execution time available to service the aperiodic tasks.

20 CMU/SEI-90-TR-6

* SSEnabledQueue - a priority-ordered queue of all SSCBs that are currently en-
abled. If the SSEnabledQueue is empty, then no sporadic servers have been
created for use (i.e., either none have ever been created or all that have been cre-
ated have been terminated).

4.3.2. Aperiodic Task Queues
A sporadic server is created to service one or more aperiodic tasks. The following queues are
used to manage the aperiodic tasks associated with a sporadic server:

" Aperiodic ReadyQueue - a queue of ready-to-execute aperiodic tasks. An
Aperiodic ReadyQueue exists for each sporadic server. If an aperiodic task is
ready to execute, then the runtime system places the aperiodic task's TCB upon the
Aperiodic Ready_.Queue associated with the sporadic server assigned to the
aperiodic task. Similarly, if the aperiodic task is ever not ready to execute, then the
runtime system removes the aperiodic task from the AperiodicReady_Queue. The
AperiodicReadyQueue queue is managed with a FIFO queueing discipline. If pref-
erential service for some aperiodic tasks is desired, a separate sporadic server with
a higher priority can be used.

" Registered AperiodicsList - a list of aperiodic tasks that are registered to use the
sporadic server. The information on this list is used to unregister aperiodic tasks
from the sporadic server if sporadic service is ever terminated (e.g., during a mode
change [11]).

4.3.3. The Sporadic Server Control Block (SSCB)
To support sporadic servers in an Ada runtime system, a new data type is needed to contain the
information about each sporadic server created by the runtime system. This new data type is the
Sporadic Server Control Block (SSCB). The following fields in the SSCB are used to schedule
aperiodic tasks that will consume sporadic server execution time (other SSCB fields will be dis-
cussed in Section 4.5.4):

* Period - the period of the sporadic server

• Priority - the priority of the sporadic server

* MaxExecTime - the maximum execution time of the sporadic server

* AvailExecTime - the execution time the server has available for aperiodic service

• SS_Ready QueueLink - a pointer to the next SSCB on the SSReady-Queue

* On SS ReadyQueue - a boolean value that indicates whether or not the sporadic
server is present on the SSReadyQueue

* SSEnabledQueueLink - a pointer to the next SSCB on the EnabledSSQueue

* ExhaustedTask - a pointer to the TCB of a dummy task that is used to suspend the
processing of a task when the sporadic server it is using .exhausts its available ex-
ecution time (the use of an ExhaustedTask is discussed in Sections 4.3.7 and 4.4)

* Aperiodic Ready Queue Head - a pointer to the first task on the sporadic server's
AperiodicReadyQueue

• Registered AperiodicsHead - a pointer to the head of the
RegisteredAperiodics_List

Each sporadic server's period, priority, and maximum execution time are specified by either

CMU/SEI-90-TR-6 21
0

implementation-dependent pragmas or runtime calls. Pragmas or runtime calls are also neces-
sary to register each aperiodic task with its sporadic server. 0

4.3.4. Task Control Block Extensions
Implementation of sporadic servers requires some information to be added to the TCB of each
task. These additions are summarized below:

" BasePriority- the default execution priority of the task. 0
" CurrentPriority - the priority at which the task can currently execute. Both

Base_Priority and CurrentPriority are necessary since the sporadic serve algorithm
adjusts the priority of an aperiodic task depending upon whether or not it is using its
sporadic server. The Current-Priority is the priority used to queue TCBs on the
TaskReadyQueue.

" TaskCategory - the category to which this task is associated. A task that can
execute is in either the NormalTask category or in the AperiodicTask category.
Only tasks in the AperiodicTask category can use a sporadic server. To prevent an
aperiodic task from consuming more than the available sporadic server capacity a
special task category is used: ExhaustedTask. A task in this special category is
never executed as an actuql task; it is merely added to the Delay.Queue when
appropriate. When the delay for a task in the ExhaustedTask category expires, the
available execution time for the corresponding sporadic server has been exhausted
and sporadic service must be suspended. An ExhaustedTask exists for each
sporadic server. Another special task category, the ReplenishTask, is defined later
in Section 4.5.

" My SporadicServer - a pointer to the SSCB used by this task. The pointer is set to
null if the type of the task is NormalTask.

" Using-Sporadic Server - a boolean value that indicates whether or not the task is
currently consuming its sporadic server's execution time.

" AperiodicQueue_Link - a pointer to the TCB of the next aperiodic task on the
AperiodicReadyQueue associated with this task's sporadic server.

" On AperiodicQueue - a boolean value that indicates whether or not this task is on
its sporadic server's AperiodicReadyQueue.

" Registered_AperiodicLink - a pointer to the TCB of the next aperiodic task on the
RegisteredAperiodicList.

4.3.5. Sporadic Server Data Structure Example
Figure 7 presents an example of the sporadic server data structures. In this section we will be
discussing the data structures used to schedule aperiodic tasks that lie outside the gray box in
Figure 7. The data structures enclosed in the gray box are used to manage the replenishment of
consumed sporadic execution time and will be defined and discussed later in Sections 4.5 and
4.6.

In Figure 7, five sporadic servers, SSCB-1 through SSCB-5, have been created and placed on
the SSEnabled_Queue in priority order (SSCB-1 having the highest priority and SSCB-5 having
the lowest priority). Although five sporadic servers have been created, only two of them are
"ready" in the sense that they have execution time available and aperiodic tasks ready to con-
sume the execution time. These two "ready" sporadic servers (SSCB-3 and SSCB-5) have been
placed on the SSReadyQueue in priority order.

22 CMU/SEI-90-TR-6

Referring to the control block of the third sporadic server (SSCB-3) in Figure 7 we can confirm
that it should be on the SSReadyQueue because its AvailExecjTime is greater than zero and
its Aperiodic Ready-Queue has two ready-to-execute aperiodic tasks, TCB-1 and TCB-2. By
following the links from the RegisteredAperiodics_Head we can see that three aperiodic tasks
(TCB-1, TCB-2, and TCB-3) ae registered to use this sporadic server. Also associated with this
sporadic surver is its Exhausted_Task.

4.3.6. Modification of the TaskReady_Queue Support Routines
As described above, the runtime system maintains two queues for "ready-to-execute" sporadic
servers and aperiodic tasks. The runtime system maintains an SSReadyQueue that is updated
whenever the readiness of a sporadic server or an aperiodic task changes. Also, each sporadic
server has an AperiodicReadyQueue that is updated whenever the readiness changes for one
of the sporadic server's aperiodic tasks.

Typically, an Ada runtime will use procedures to manipulate the TaskReadyQueue. For a
sporadic server implementation, these procedures must be modified to adjust the
SS_Ready_Queue and/or the sporadic server's Aperiodic Ready_Queue whenever appropriate.
As an aperiodic task is added to or removed from the TaskReadyQueue it should also be
added to or removed from its sporadic server's AperiodicReadyQueue. Also, as a sporadic
server's AperiodicReadyQueue is adjusted it is necessary to determine if the sporadic server
should be added to or removed from the SSReady_Queue. The pseudo-code for these proce-
dures is Iresented in Figure 8. It is also necessary to check if a sporadic server should be added
to or removed from the SSReadyQueue whenever the sporadic server's execution time is
exhausted or replenished. These checks are discussed in Section 4.5.

CMU/SEI-90-TR-6 23

0N

*I=

U A
CC

9L.
r: - (3

F0

o , CE

; CO CO

7 A

U)U

aa

Cc cc

040

V 0 01

C '0

procedure Add TaskToReady Queue(task : TCB) is

begin

Add the task to the Task Ready Queue;

if task.Task Category - AperiodicTask then

Add the task to its sporadic server's Aperiodic._ReadyQueue;

if (not task.MySporadic Server.OnSSReady Queue) and then
task.MySporadicServer.Avail_ExecTime > 0.0 then

Add the task's sporadic server to the SS Ready Queue;

end if;

end if;

end AddTaskToReadyQueue;

procedure Remove_TaskFromReadyQueue(task : TCB) is
begin

Remove the task from the TaskReady Queue;

if task.TaskCategory - AperiodicTask then

Remove the task from its sporadic server's AperiodicReadyQueue;

if task.My Sporadic Server.OnSSReady_Queue and then
(task.y SporadicServer.AperiodicReady QueueHead null or else
task.MySporadicServer.AvailExecTime = 0.0) then

Remove the task's sporadic server from the SSReadyQueue;

end if;

end if;

end RemoveTask_FromReadyQueue;

Figure 8: AddTaskToReadyQueue and RemoveTaskFromReadyQueue

4.3.7. Use of the DelayQueue for Scheduling Aperiodic Tasks Using Sporadic
Servers

An Ada runtime system typically has a DelayQueue that is used to implement the Ada delay

statement. When a task executes a delay statement, the task. is removed from the
Task_ReadyQueue and placed upon the Delay_.Queue to be awakened (moved back to the

TaskReady_.Queue) after some specified delay. A sporadic server implementation also uses

the DelayQueue as a mechanism to prevent the execution of an aperiodic task from consuming
more sporadic server execution time than it is allocated. The Exhausted-Task category is used

for this purpose.

As an aperiodic task is about to begin execution and use its sporadic server, the ExhaustedTask

associated with the aperiodic task's sporadic server is placed on the Delay_Queue with a delay

CMU/SEI-90-TR-6 25

equal to the available execution time of the sporadic server. If the processing of the aperiodic
task completes, is suspended, or pre-empted before the ExhaustedTask's delay expires, the 0
E "haustedTask is simply removed from the Delay-Queue. However, if the delay for the
Exhausted_Task expires before the aperiodic task completes then the sporadic server has ex-
hausted its available execution time. In this case, sporadic service for the aperiodic task is
suspended, a replenishment is scheduled for the consumed execution time, and the
Current_Priority of the aperiodic task is reset to its Base_Priority (these actions are taken in the 0
sporadic server procedure Mark SS Consumption which is discussed in Section 4.6.1).

4.4. Scheduling Aperiodic Tasks Using Sporadic Servers
Now that the data structures used in scheduling aperiodic tasks that use sporadic servers have
been presented, the conditions governing the execution of an aperiodic task with a sporadic 0
server can be discussed.

The conditions under which an aperiodic task should be scheduled to execute using a sporadic
server are as follows:

1. The aperiodic task must be ready to execute; 0

2. The aperiodic task's sporadic server must have execution time available to execute
the aperiodic task;

3. The sporadic server must have a priority equal to or higher than all other tasks that
are ready to execute; 0

4. Use of the sporadic server must be necessary in order to execute the aperiodic
task. Otherwise, it would be wasteful to use a sporadic server's execution time for
an aperiodic task that could execute without the server (e.g., when the processor
would otherwise be idle).

The above rules are simply stated, but an application can have many sporadic servers with 0
different priorities and each sporadic server could be supporting several aperiodic tasks. As
such, a general test of the above conditions every time a new task becomes ready to execute
could be expensive, slowing the system's response to external events and increasing the general
runtime overhead of the system. To avoid these problems, a queue of sporadic servers is used.
The SSReady_Queue is a priority-ordered queue of sporadic servers that have both at least one 0
aperiodic task ready to use the sporadic server and execution time available to execute the
aperiodic task. Using the SSReadyQueue greatly simplifies the check of the first two con-
ditions above. If the head of the SS.ReadyQueue is null then none of the system's sporadic
servers are ready to be used because either they have no execution time available or none of
their aperiodic tasks are ready to execute. If the head of the SSReadyQueue is not null then it 9
is necessary to check the third condition above. The sporadic server can be used only if it has a
priority equal to or greater than the task that would normally execute next. Finally, if the third
condition passes then the last check to be made determines whether or not the high priority of
sporadic server is necessary to execute the aperiodic task. This method of checking for sporadic
servers is efficient because no searches are necessary to find "ready" sporadic servers and
aperiodic tasks.

26 CMU/SEI-90-TR-6

Once it is determined that an aperiodic task can execute using its sporadic server the following
operations are necessary. The aperiodic task's CurrentPriority is set equal to the priority of its
sporadic server and the aperiodic task's UsingSporadicServer boolean is set to TRUE. Next,
the aperiodic task is moved to the head of the TaskReadyQueue. Before execution of the
aperiodic task begins it is necessary to add the sporadic servers ExhaustedTask to the
DelayQueue to prevent the aperiodic task from overrunning the sporadic server's available ex-
ecution time. Finally, for proper monitoring of the execution time consumed by the aperiodic task,
the time that execution begins must be recorded (this is used later by the procedure
Mark SS Consumption discussed in Section 4.6.1). The time at which execution begins is
recorded in the sporadic server's ReplenishmentControlBlock (the RCB is discussed in Section
4.5).

CMU/SEI-90-TR-6 27

procedure Execute NextTask is

Next Task : TCB :- Taak ReadyQueue; -- the head of the TaskReadyQueue

begin

if SS EnabledQueue /- null then -- Are any sporadic servers are enabled?

-- Check if an aperiodic task can execute now using its sporadic server.

if SSReadyQueue /- null and then
SSReadyQuue.Priority >- Task ReadyQueue.Priority and then
Task ReadyQueue.Priority > SSReadyQueue.AperiodicQueue. BasePriority
then

NextTask := SSReadyQueue.AperiodicQueue;

-- Update the sporadic server information in the TCB.

NextTask.Current_P riority : SSReadyQueue.Priority;
NextTask.UsingSporadic_Server : True;

Move the aperiodic task to the head of the Task ReadyO;

-- Place the ExhaustedTask on the delay queue with a delay of
-- AvailExecTime time units.

Add_TaskToDelayQueue (SSReady Queue.ExhaustedTask,
SS_Ready Queue.AvailExecTime);

-- Remember the time when execution began for the aperiodic task.

NextTask.Replata. ExecBeginTime := Clock;

end if;

-- Mark the consumption of sporadic server execution time if we are
-- changing to a new task and the last task was using a sporadic
-- server.

if CurrentTask.UsingSporadicServer and CurrentTask /- NextTask then
Nark_SS_Consumption;

end if;

-- Remember the priority level of the previously executing task and the
-- the next task to execute.

Previous Priority Level := NextPriority Level;
NextPriorityLevel :- NextTask.Current_Priority;

-- Set the active/idle status of sporadic server priority levels and
-- schedule any replenishments as necessary.

CheckS SReplenishment;

end if;

Current-Task :- NextTask;

Execute the task at the head of the Task Ready Queue;

end Execute Next Task; 0

Figure 9: ExecuteNextTask

28 CMU/SEI-90-TR-6
0

Figure 9 presents the pseudo-code for the procedure ExecuteNextTask The first half of
ExecuteNextTask implements the operations described above for determining if a aperiodic
task can execute using its sporadic server and then prepares the aperiodic task for execution.
The second half of ExecuteNextTask shows the conditions that must be checked every time
tasks are switched if sporadic servers are in use. These checks concern the accurate monitoring
of the consumption of a sporadic server's execution time and the proper replenishing of any
consumed sporadic server execution time and are discussed in Sections 4.5 and 4.6.

4.5. Data Structures For Scheduling Sporadic Server Replenishments

4.5.1. The Replenishment Data Type
A new data type, replenishment, is the basic unit of information that is managed by the sporadic
server for replenishing consumed execution time. A replenishment has two fields:

* RepTime - the time at which a replenishment is to be performed.

* RepAmount- the amount of execution time to be added to the sporadic server's
AvailExecTime.

4.5.2. Sporadic Server Replenishment Queues
A sporadic server's execution time can be consumed during several distinct intervals of time,
each requiring a separate replenishment. As such, a queue of outstanding replenishments, the
Rep Queue, must be maintained for each sporadic server. Each Rep-Queue is a FIFO queue of
Replenishments whose RepTimes have not been reached yet. For efficiency, the storage for
the RepQueue should not be created dynamically, but instead preallocated at compile time.

4.5.3. The SSUsedQueue
The runtime system maintains the SSUsed Queue, a priority-ordered queue of sporadic servers
that have had some of their execution time consumed but have not yet scheduled the replenish-
ment for the consumed execution time. As priority levels become idle, the SSUsed_Queue is
checked for any sporadic servers that have replenishments that need to be scheduled.

4.5.4. SSCB Fields for Managing Replenishments
An SSCB has the following additional fields that are used to manage the replenishment of con-
sumed sporadic server execution time:

Replenish_Task - a pointer to the TCB of a dummy task that is used to implement
replenishments for a sporadic server. When a ReplenishTask is awakened and
removed from the Delay-Queue, the corresponding sporadic server is replenished
using the replenishment information at the head of the sporadic server's replenish-
ment queue.
SSUsedQueueLink - a pointer to the SSCB of the next sporadic server on the
SS_Used_Queue.
On SS UsedQueue - a boolean value that indicates whether or not the sporadic
server is present on the SSUsed_Queue.
ReplenishData - a pointer to the ReplenishmentControl Block (RCB) for this
sporadic server. The RCB, described in Section 4.5.5, contains all the information
concerning the outstanding replenishments for a sporadic server.

CMU/SEI-90-TR-6 29

4.5.5. The Replenishment Control Block
Each sporadic server has an RCB that contains the information about the outstanding replenish- 0
ments for the sporadic server. The fields of the RCB are:

" Rep Queue - a pointer to the head of a FIFO queue of Replenishments whose
Rep_Times have not been reached yet.

" RepOrigin - the time from which the Rep_Time of a Replenishment is determined
(i.e., the actual replenishment time is equal to the RepOrigin plus the period of the 0
sporadic server). Usually, the RepOrigin corresponds to the time at which the
sporadic server's priority level becomes active (the exception occurs when the
sporadic server has exhausted its execution time as shown in Figure 4 in Section 2).

" ExecBeginTime - the time at which the sporadic server begins servicing an
aperiodic request. This value is used to compute the amount of sporadic server
execution time that is consumed by an aperiodic task. 0

*PendingReplenishment - a Replenishment that has not yet been placed in the
RepQueue. Pending_Replenishment is used to accumulate the execution time that
is consumed throughout one interval of time during which the sporadic server's prior-
ity level is active. If any sporadic server execution time is consumed, its
PendingReplenishment is placed on the RepQueue when the sporadic server's 0
priority level becomes idle or when its execution time is exhausted. If the
RepQueue ever becomes full, PendingReplenishment is used to accumulate
replenishments until an entry on the Rep_Queue becomes available. Note that for
the cases when the RepQueue becomes full, the earliest allowed replenishment for
consumed execution time may not occur.

4.5.6. Replenishment Data Structure Example 0
Now that the data structures used to manage the replenishment of consumed sporadic server
execution time have been presented we can refer to Figure 7 to see an example of these data
structures. Two sporadic servers, SSCB-3 and SSCB-5, are on the SSUsedQueue indicating
that some of their execution time has been consumed but that the replenishment for the con-
sumed execution time has not yet been placed on their respective replenishment queues. The 0
Rep_Queue for SSCB-3 is shown to have three outstanding replenishments that are waiting for
their replenishment times to arrive. Also shown is SSCB-3's ReplenishTask that is placed upon
the DelayQueue to wake up at the time the next replenishment is due.

4.6. Scheduling Sporadic Server Replenishments 0
The following are the basic operations necessary for handling sporadic server replenishments:

1. The consumption of sporadic server execution time must be monitored and the
replenishment amounts must be computed.

2. The times at which consumed sporadic server execution time are to be replenished
must be determined. 0

3. Each outstanding replenishment for a sporadic server must be queued until the
replenishment of sporadic server execution time is made.

The procedures for implementing these operations are presented in this section.

30 CMU/SEI-90-TR-6

4.6.1. Tracking the Consumption of Sporadic Server Execution Time
Each time the execution of an aperiodic task that is using its sporadic server can be stopped, it is
necessary to keep track of the amount of the sporadic server's execution time that was con-
sumed. The execution of an speriodic task that is using its sporadic server can be stopped by
one of the following events:

1. The aperiodic task execution is pre-empted by a higher priority task;

2. The aperiodic task suspends;

3. The aperiodic task completes execution; or,

4. The execution time of the aperiodic task's sporadic server is exhausted.

The first three cases above are detected in the second half of the procedure Execute-NextTask
(Figure 9) as task execution is switched from one task to another. If the previously executing task
was using its sporadic server and the next task to execute is a different task, then one of the first
three cases above holds. The fourth case above is checked by the procedure that processes
tasks on the Delay_Queue as their delays expire. For each of the above cases, the procedure
MarkSSConsumption is called. The pseudo-code for the MarkSSConsumption procedure is
presented in Figure 10 and discussed below.

The first job that MarkSSConsumption must perform is to determine the reason the execution
of the aperiodic task has stopped and, as necessary, adjust the sporadic server data in the
aperiodic task's TCB and/or re-queue the aperiodic task on the TaskReadyQueue. The
sporadic server data in the aperiodic task's TCB must be adjusted if the aperiodic task is no
longer ready to execute or if its sporadic server has exhausted its execution time. Thus, in cases
2, 3, and 4 the aperiodic task's CurrentPriority must be set equal to its BasePriority and its
UsingSporadicServer boolean must be set to FALSE. In case 1, neither of these changes is
necessary because when the higher priority activity ceases, the aperiodic task will still be ready to
execute and its sporadic server will still have execution time available.

To determine if the aperiodic task should be re-queued on the TaskReady_Queue it is neces-
sary to determine its readiness. Even though the execution of the aperiodic task has stopped, the
aperiodic task may still be ready to execute and, therefore, still be on the TaskReadyQueue. In
cases 1 and 4 above, the aperiodic task remains ready to execute but its priority is no longer high
enough to execute because either a higher priority task can now execute or the aperiodic task's
sporadic server has exhausted its execution time. In both of these cases, the aperiodic task
should remain on the TaskReadyQueue. For case 1, the aperiodic task can remain in its
current position on the Task_Ready_Queue because its priority remains unchanged. However, in
case 4 the aperiodic task must be re-queued on the TaskReadyQueue because its priority has
dropped from its sporadic servers priority to its base priority.2

Next, the Delay-Queue must be checked for the presence of the sporadic server's

2Note: Re-queueing of a task to the TaskReadyQueue is different from placing a task on the Task_- ReadyQueue
that is not already there. When placing a task on the TaskReady_Queue that is not already there, tasks of equal priority
are queued in FIFO order. However, re-queueing of a task on the Task_ReadyQueue requires that tasks of equal
priority be placed on the queue in LIFO order.

CMU/SEI-90-TR-6 31

ExhaustedTask. In each of the first three cases above, consumption of the sporadic server's
execution time has stopped but the sporadic server's ExhaustedTask is still on the 0
DelayQueue and, therefore, must be removed.

The consumption of sporadic server execution time is then calculated and any necessary adjust-
ments to the SSReadyQueue are made. The amount of execution time consumed is deter-
mined by subtracting ExecBeginTime from ne current time. ExecBeginTime was set in the
procedure ExecuteNextTask before the aperiodic task was scheduled to execute (see Section
4.6.1). Since some sporadic server execution time has been consumed, it is necassary to check
if the sporadic server should remain on the SSReadyQueue as is done when adding or remov-
ing an aperiodic task from the TaskReadyQueue (Section 4.3.6)

Next, the amount of consumed execution time must be used to update the sporadic servE 's state
and be scheduled for replenishment. The sporadic server's execution time is decremented by the
amount of execution time consumed. The total amount of consumed sporadic server execution
time during this active period (which is stored in Pending-Replenishment) is incremented by the
amount of consumed execution time. Finally, if the sporadic server's execution time is ex-
hausted, then the Pending-Replenishment must be placed on the replenishment queue with a 0
call to the procedure QueuePendingReplenishment described in Section 4.6.3. Note that this
check for sporadic server exhaustion compares for an AvailExecTime that is less than zero.
This allows for accounting errors in the value of AvailExecTime due to runtime overhead and
clock granularity. If the sporadic server is not exhausted, then it is placed on the
SS_Used_Queue from which the procedure TrackActiveIdleStatus (Section 4.6.2) will 0
schedule the sporadic server's replenishment when its priority level becomes idle.

32 CMU/SEI-90-TR-6
0

procedure Mark_-SS -Consumption is
Hy SS :access sporadic-server renames Current Task. My__Sporadic Server;
Consumed-Execution Time :duration;

begin

-- Should the priority of the aperiodic task be changed?

if Current_-Task is not on the Task ReadyQueue or
My SS.E.haustedTask is not on the Delay .Queue then

Current Task.Using Sporadic Server :=False;
CurrentTask.CurrentPriority :- CurrentTaak.BaaePriority;

end if;

-- __Should the aperiodic task be re-queued on the Task_Ready_Queue?

if CurrentTask is cn the Task Ready .Queue and My SS.Exhausted ask is not on the Delay Queue then

Re-ueue the CurrentTask on the Task Ready .Queue;

end if;

-- Should the Exhausted-Task be removed from the Delay- Queue?

if My...SS.ExhaustedTask is on the Delay Queue then

Remove My..SS.ExhaustedTask from the Delay Queue;

end if;

-- Adjust the sporadic server's available execution time.

Consumed Exec_-Time :- Clock - My SS.RepleniahData.ExecBeginTime;
Mfy SS.Ava&il-ExecTime :=bySS.AvailExecTime - Consumed ExecTime;

-- Should the sporaidic server be removed from the SS_Ready_.Queue?

if bMySS.AperiodicReadyQueue = null or My _SS.AvailExecTime <= 0.0 then

Remove My-SS from the SS Ready Queue;

end if;

-- Accumulate the execution time consumed during this active period.

ItySS .Replenish Data. Pending__Replenishment. Rep_,Amount
My SS.Replenish-Data.Pending~yeplenishment.RepAmount + ConsumedExecTime;

-- If the sporadic server's execution tine is exhausted, then schedule the
-- Pending Rteplenishment. Otherwise, add the sporadic server to the SSUsedQueue.

if MySS.AvailExacTime <- 0.0 then

MySS.ReplenishData.PndingRplenishient .Rep_Time
MySS.Replenish-Data.Rep._rigin + MySS .Period;

QueuePending_ Replenishment (MySS);

1y_,.AvailExecTime :- 0.0;

elsif not My_SS.OnSSUsed,_Queue then

Add My SS to the SS..Used Queue;

end if;

end Mark 55 Consumption;

Figure 10: MarkSSConsumption

CMU/SEI-90-TR-6 33

4.6.2. Tracking the Active/Idle Status of Sporadic Server Priority Levels
A full implementation of the sporadic server algorithm requires that the active/idle status of the 0
sporadic server priority levels be tracked as different tasks are scheduled. This is essential
because of the following two rules concerning sporadic server replenishments:

1. The time at which a sporadic server's consumed execution time is to be replenished
is determined from the time at which the sporadic server's priority level becomes
active.

2. The time at which the total amount of consumed execution time for a sporadic
server can be determined occurs when the sporadic server's priority level becomes
idle.

When a new task is executed that has a priority higher than the previous task, some sporadic
server priority levels can become active. As the priority level for a sporadic server becomes
active, its replenishment origin (RepOrigin) must be set equal to the current time. The replenish-
ment origins are set by using a priority-ordered list of enabled sporadic servers, the
Enabled_SS_Queue. Similarly, when a new task is executed that has a priority lower than the
previous task, then some sporadic server priority levels can become idle. As the priority level of a
sporadic server becomes idle, the sporadic server's pending replenishment (if it has positive
replenish amount) can be placed on the sporadic server's RepQueue. The pending replenish-
ments are placed on the RepQueue by using the SSUsed_Queue to select the sporadic ser-
vers whose priorities lie in the range of the newly idle priority levels. These are the operations
performed by the procedure TrackActiveIdle_Status. The variables PreviousPriorityLevel
and NextPriorityLevel are used by this procedure to track the active/idle status of sporadic
server priority levels. The values of PreviousPriorityLevel and NextPriorityLevel are set as
different tasks are scheduled for execution by the procedure ExecuteNextTask (Figure 9). The
pseudo-code for TrackActiveIdleStatus is presented in Figure 11. The first section of
Track_Active_IdleStatus corresponds to the first rule above and the second section corresponds
to the second rule above.

The two exceptions to the above sporadic server replenishment rules occur when the sporadic
server's execution time has been exhausted. The first exception concerns the queueing of the
replenishment for the consumed execution time. This case is tested by the procedure
MarkSSConsumption (Section 4.6.1) which is called after each block of sporadic server execu-
tion time is consumed. When MarkSSConsumption detects that the sporadic server's execu- 0
tion time has been exhausted, the procedure Queue_PendingReplenishment (Section 4.6.3) is
called to add the pending replenishment to the replenishment queue. The second exception
concerns the setting of a sporadic server's replenishment origin (Rep_Origin) after the sporadic
server's execution time has been exhausted. As some execution time is replenished after the
sporadic server's capacity is exhausted, the replenishment origin should be set equal to the
current time to prevent any consumed execution time from being replenished too early (Figure 4
shows an example of this). The case is tested by the procedure ReplenishSporadicServer
(discussed later in Section 4.6.4) which is called as each sporadic server's replenish task wakes
up on the DelayQueue. When Replenish.SporadicServer detects this case the replenishment
origin is set to the current time.

34 CMU/SEI-90-TR-6

procedure TrackActive IdleStatus is
a a access sporadicserver;
now ti,-;

begin

if PreviousPriorityLeVel < NextPriority_Level then

-- The priority levels in the range from just above the previous
-- priority level up through the next priority level will become
-- active when Execute Next Task executes the next task. Set the
-- RepOrigin for each sporadic server within this range.

now := Clock;

-- Find the first sporadic server in the newly active range.

a as := SS EnabledQueue;
while asa /- null and then a_ss.Priority > NextPriorityLevel loop

a ss := a_ss.SSEnabledQueueLink;
end loop;

-- Set the RepOrigin for all the sporadic servers with priorities
-- in the newly active range.

while a-as /- null and then a ss.Priority > PreviousPriorityLevel loop

a_sa.ReplenishData.Rep Origin := now;

a ss := a_ss.SSEnabled_QueueLink;

end l~op;

else

-- The priority levels from the previous priority level down to the
-- priority level just above the next priority level will become
-- idle when Execute Next Task executes the next task. Schedule
-- replenishments for any sporadic servers within this range of
-- priority levels that are currently on the SSUsedQueue.

-- Move down the SS Used Queue and, process each sporadic server with
-- a priority greater than the next priority level.

aas := SSEnabled Queue;

while aas /- null and then a as.Priority > Next PriorityLevel loop

QueuePendingReplenishment(a_ss);

a as := a_sa.SS UsedQueue_Link;

00 end loop;

end if;

end TrackActive_IdleStatus;

Figure 11: TrackActiveIdle_Status

CMU/SEI-90-TR-6 35

4.6.3. Queueing Sporadic Server Replenishments
Several conditions need to be checked when a request is made to add a replenishment to a
sporadic server's replenishment queue. First, the pending replenishment cannot be added to the
replenishment queue if the replenishment queue is full. The replenishment queue can become
full if the consumption of execution time occurs during many distinct intervals of time (where each
consumption requires a different replenishment time) such that the last consumption of execution
time fills the replenishment queue. In this case of a full replenishment queue,
PendingReplenishment is left unchanged and will be added to the replenishment queue when
space becomes available by the procedure ReplenishSporadicServer discussed in Section
4.6.4. Until space becomes available on the replenishment queue, additional replenishments
may be accumulated in Pending-Replenishment. Note that in this case, the replenishment time
of the last replenishment accumulated in PendingReplenishment is used as the replenish time
when PendingReplenishment is placed on the replenishment queue. If the replenishment queue
is not full, the pending replenishment is added to its replenishment queue and the replenish
amount of Pending-Replenishment is reset zero. Next, since the sporadic server no longer has a
pending replenishment, the sporadic server is removed from the SSUsedQueue. Now that the
replenishment queue has at least one entry, the sporadic server's replenish task must be placed
upon the DelayQueue if it is not already there. The pseudo-code for the procedure
QueuePendingReplenishment is presented in Figure 12.

procedure QueuePendingReplenishment (ass : access sporadic_server) is
begin

-- Add the sporadic server's pending replenishment to the RepQueue.

if the sporadic server's RepOueue is not full then

Add the pending replenishment to the RepQueue;

ass.ReplenishData.Pending Rcplenishment.RepAmount :- 0.0;

Remove the sporadic server from the SS Used Queue;

-- If the RepQueue was just previously empty, then the sporadic
-- server's Replenish-Task must be put on the Delay_Queue.

if the RepOueue has only one entry then

Add a.ss.Replenish Task to the Delay Queue to wake up at Pending ReplenishmentRep_ Time:

end if:

end if;

end Enqumue Pending Replenishment;

Figure 12: QueuePendingReplenishment

36 CMU/SEI-90-TR-6

4.6.4. Replenishing Sporadic Servers
The procedure ReplenishSporadic_Server (presented in Figure 13) is called whenever the delay
expires for a sporadic servers replenish task. This procedure dequeues the replenishment at the
head of the sporadic server's replenishment queue and increments the sporadic server's avail-
able execution time using the replenish amount from the dequeued replenishment.

The operation of Replenish_- SporadicServer procedure proceeds as follows. First, the sporadic
server's available execution time is checked and, if it is zero, the sporadic servers replenishment
origin is set to the current time as discussed earlier in Section 4.6.2. Next, a replenishment is
removed from the replenishment queue and the replenish amount is added to the sporadic
server's available execution time. If the replenishment queue is not empty, the sporadic server's
replenish task is then added to the DelayQueue to wake up at the replenish time of the
replenishment at the head of the replenishment queue. Now that an entry on the replenishment
queue has been freed, the sporadic server's pending replenishment is checked and if it has a
positive replenish amount, the pending replenishment is added to the replenishment queue.
Since the sporadic server's available execution time has just been increased, the last operation of
ReplenishSporadic.Server is to check if the sporadic server should be added to the
SSReady_Queue.

CMU/SEI-90-TR-6 37

0

procedure Replenish-Sporadic-Server (a.ss :access sporadic-server) in

Thijs Rep :Replenishment;

begin

-- Before this replenishment is made, if the sporadic server's available
-- execution time is zero, then the RepOrigin should be set to the
-- current time.

if a-ssAvailExecTime := 0.0 then

ass.ReplenishData.RepOrigin :- Clock;

end if;

-- Dequeue the next replenishment from the sporadic server' s RepQueue.

This _Rep :- Dequeue Replenishment (ass);

-- Increment the sporadic server's available execution time.

a sAvailExecTime :- a-ss.Avail Zec-Time + This Rep.Rep_,Amount;

-- If the RepQueue is not empty, place the Replenish -Task back on the
-- Delay Queue to wake up at the Rep_ Time of the replenishment at the
-- head of the Rep-.Queue.

if the Rep Queue is not empty then

AddaLss.RepenshTask to the Delay Queue to wake up at the Rep_ ime at the head of the Rep_.Oueue:

end if;

-- If the RepQueue was just previously full and the sporadic server's
-- pending replenishment has a positive Rep_,Amount, then add the pending
-- replenishment to the Rep_ Queue and rest the Rep Amount to zero.

if the Rep .Queue only has one free slot then

Queue -PendingYReplenishment (a_ss);

end if;

-- Since some of.the sporadic server's execution time has been
-- replenished, check if the sporadic server should be placed on the
-- SS-ReadyQueue.

if not a-ss.OnSS_Rsady_Queue and then a sm.Aperiodic Ready_ Queue /- null then

Add the sporadic server to the SS Readty Queue:

end if;

end Replenish Sporadic Server;

Figure 13: Replenish,.SporadicServer

38 CMU/SEI-90.TR-6

5. Implementation Options for Sporadic Servers in an Ada
Runtime

This section discusses several replenishment and execution options for implementing sporadic
servers in an Ada runtime. The replenishment options are concerned with controlling and/or
reducing the overhead necessary to queue and schedule replenishments. The execution options
concern providing high priority service to only those aperiodic requests that can be completely
serviced without interruption. These options are not necessary for a fully functional implemen-
tation. However, depending upon the application, these options may provide a better solution
than the full implementation described in Section 4.

5.1. Implementation Concerns
The options for managing replenishments in a sporadic server implementation address the follow-
ing questions:

* How much execution time must be consumed before a replenishment is placed upon
the repqueue?

* When should replenishments be removed from the replenishment queue and when
should the ReplenishTask be placed upon the delay queue?

* Can the tracking of the active/idle status of priority levels be eliminated?

* Can sporadic service for aperiodic tasks be restricted to only those aperiodic tasks
that can be completely serviced before the sporadic server's available execution time
is exhausted?

5.2. Specification of a Minimum Replenishment Amount
The overhead of queueing replenishments and adding replenish amounts to the sporadic server's
available execution time can become a concern when the sporadic server's maximum execution
time is much larger than the expected execution times of the aperiodic tasks that share the
sporadic server. Under these conditions, many separate replenishments can sometimes be nec-
essary because the sporadic server's execution time can be consumed in many separate, small
amounts before any replenishments are made. As more replenishments are necessary, the over-
head necessary to place each replenishment upon the replenishment queue and add each
replenish amount to the available server execution time may be a concern.

To reduce this replenishment overhead, a minimum replenishment amount can be specified. As
the sporadic server's execution time is consumed, it is accumulated in the pending replenish-
ment. Only when the amount accumulated in the pending replenishment exceeds the minimum
replenishment amount is the replenishment placed on the replenishment queue. When the
replenishment is placed on the replenishment queue in this manner, the replenishment time of the
most recent replenishment is used as the time at which this replenish amount is to be added to
the sporadic server's available execution time. Thus, the replenishment overhead of several
separate consumptions of sporadic server execution time is reduced to the overhead of one
replenishment. Also, specification of a minimum replenishment amount limits the maximum
length of the replenishment queue (i.e., the maximum queue length will be equal to the maximum
server execution time divided by the minimum replenishment amount) and allows the implemen-

CMU/SEI-90-TR-6 39

tation to eliminate all checks for replenishment queue overflow. However, this option does have
the drawback that the times replenishments are made can be later than with the full replenish- 0
ment policy.

An additional option, flush, can be used in conjunction with a minimum replenishment amount.
The flush option specifies that, if a consumption of sporadic server execution time consumes less
than the minimum replenishment amount, then assume that the minimum replenish amount has
been consumed (i.e., flush the difference between the actual amount consumed and the minimum
replenishment amount) and schedule the replenishment. This option provides an earlier
replenishment schedule than specifying just a minimum replenishment, but it can waste the
sporadic server's unused execution time.

5.3. Scheduling Replenishments Only Upon Server Exhaustion
To further reduce the replenishment overhead, replenishments can be removed from the
replenishment queue only when the sporadic server's execution time is exhausted. Upon ex-
haustion of the server's execution time, the replenishment queue is checked for any replenish-
ments whose replenish time has already passed. The replenish amounts for these replenish-
ments are then added to the sporadic server's available execution time and sporadic service is
continued. If no replenishments have replenish times earlier than the current time, then the
ReplenishTask must be placed on the delay queue using the information at the head of the
replenishment queue. This technique reduces the overhead of managing replenishments by
removing them from the replenishment queue only when necessary (i.e. when no more sporadic
server execution time remains). Also, since the Replenish-Task is only added to the delay queue
when the server's execution time has been completely consumed, the frequency of adding and
removing the replenish task to the delay queue can be greatly reduced. Using the replenish task
less also reduces the timer interrupts the runtime system must process.

5.4. Eliminating the Tracking of Active/Idle Status of Priority Levels
A full implementation of sporadic servers requires that the active/idle status of sporadic server
priority levels be tracked as different tasks are scheduled (Section 4.6.2). The time at which a
sporadic server's priority level becomes active is used as the time origin to calculate the
replenishment time for any consumed sporadic server execution time. Although this approach
provides the the earliest replenishment schedule as shown in [13], it requires that the active/idle S
status of priority levels be tracked on every task switch even if no sporadic server execution time
is consumed. Thus, the total overhead to track the active/idle status is directly related to the
frequency of task switches.

A simpler replenishment policy can be used to eliminate the necessity of tracking the active/idle
status of sporadic server priority levels. By definition, a sporadic server's priority level must be
active if its execution time is being consumed. Therefore, using the time at which the sporadic
server's execution time is initially consumed as the origin from which replenishment times are
determined cannot provide an earlier replenishment schedule than tracking the active/idle status
of priority levels does. This simple replenishment policy requires that the consumed sporadic
server execution time be scheduled for replenishment one server period after sporadic service is
initiated (as is done in the example presented in Figure 1). The drawback of this simple
replenishment policy is that some'replenishments do not occur as early as possible.

40 CMU/SEI-90-TR-6

III II0

Using this simple replenishment policy allows the elimination of the procedure

TrackActive_Idle_Status (Section 4.6.2). Replenishments must then be scheduled as each por-
tion of sporadic server execution time is consumed. The procedure Mark SSConsumption

(Section 4.6.1) can be modified to schedule replenishment for sporadic server execution time as it

is consumed.

5.5. Avoiding Suspension of Aperiodic Service due to Sporadic Server
Exhaustion

It may be desirable to only begin the execution of an aperiodic task if its sporadic server can
completely service the aperiodic task before exhausting its available execution time. This re-
quires that the sporadic server have available the maximum amount of execution time that the
aperiodic task could require before granting service to the aperiodic task. This amount of execu-
tion time can be specified in two ways:

1. Declare a minimum amount of execution time a sporadic server must have before
providing service to any aperiodic task.

2. Specify for each aperiodic task the maximum execution required to complete the
aperiodic task (this information could be added to the aperiodic task's TCB).

The first option above is easily implemented by changing the checks for placing a sporadic server

on the SSReady_Queue to require at least the minimum execution time instead of just an avail-
able execution time greater than zero (see the procedures presented in Figures 8 and 13).

The second option above would require much more overhead to determine when a sporadic
server could service an aperiodic task, unless a shortest-job-first policy were adopted for ordering
the service of all the aperiodic tasks registered to a particular sporadic server. In this case, the
aperiodic tasks would be queued in shortest-job-first order on the sporadic server's
Aperiodic ReadyQueue. The check for placing a sporadic server on the SSReady-Queue
would then compare the sporadic server's available execution time to the execution time required
by the aperiodic task at the head of its AperiodicReadyQueue. Note that servicing aperiodic
tasks in shortest-job-first order may "starve" some long aperiodic tasks.

6. Summary
This paper described implementation approaches for the Sporadic Server (SS) algorithm. The
SS algorithm provides a general solution for scheduling both soft and hard-deadline aperiodic
tasks. The average response time performance of soft-deadline aperiodic tasks can be greatly
improved by creating a sporadic server that is shared by the soft-deadline aperiodic tasks. The
response time for hard-deadline aperiodic tasks (sporadic tasks) can be guaranteed by dedicating

a sporadic server to exclusively service the sporadic task. The SS algorithm can also be used to
implement the period transformation technique [91, to provide improved fault detection and con-
tainment capabilities for some execution errors, and as a general mechanism for implementing
solutions for producer/consumer problems. The SS algorithm operates by creating a server with
a given period and execution time. The server maintains its execution time until it is needed and
replenishes any consumed execution time in a sporadic manner based upon when the execution

time is consumed.

CMU/SEI-90-TR-6 41

This paper has presented two approaches for implementing sporadic servers in a real-time sys-
tem programmed in Ada. The first approach implements sporadic servers as a normal Ada task 0
and, as such, requires no modifications to the Ada language or its runtime system. However, the
implementation of a sporadic server as an Ada task requires a simplification of the sporadic
server algorithm that may reduce its response time performance for servicing aperiodic tasks.
The second approach is a full implementation of the sporadic server algorithm in an Ada runtime
system. This implementation requires modifications to the Ada runtime system but it is argued
that the addition of these new scheduling policies is permissible within the semantics of the Ada
language.

42 CMU/SEI-90-TR-6

0

0

Acknowledgments
The author would like to thank Ragunathan Rajkumar for his help with the design of the Ada
runtime sporadic server implementation which borrowed several ideas from his prototype defer-
rable server implementation. The author would also like to thank members of the SEI's RTSIA
project: Mark Borger, John Goodenough, and Mark Klein for reviewing drafts of this paper, offer-
ing many constructive comments, and improving the quality of the Ada code presented herein.

CMUISEI-90-TR-6 43

0

S

0

0

0

0

S

0

0

0

44 CMU/SEI-90-TR.6

0

References
[1] Mark Borger, Mark Klein, Robert Veltre.

Real-Time Software Engineerng in Ada: Observati ns and Recommendations.
In Proceedings of TRI-Ada '89, pages 554-569. ACM/biGAda, Pittsburgh, PA, October,

1989.

[2] Sadegh Davari and Sudarshan K. Dhall.
An On line Algorithm For Real-Time Tasks Allocation.
In Proceedings of the 7th Real-Time Systems Symposium, pages 194-200. IEEE, New

Orleans, Louisiana, December, 1986.

[3] S. K. Dhall and C. L. Liu.
On a Real-Time Scheduling Problem.
Operations Research 26(1):127-140, February, 1978.

[4] J. P. Lehoczky, L. Sha, and Y. Ding.
The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average Case

Behavior.
Technical Report, Department of Statistics, Carnegie Mellon University, Pittsburgh, Penn-

sylvania, 1987.

[51 John P. Lehoczky, Lui Sha, Jay K. Strosnider.
Enhanced Aperiodic Responsiveness in Hard Real-Time Environments.
In Proceedings of the Real-Time Systems Symposium, pages 261-270. IEEE, San Jose,

CA, December, 1987.

[6] C. L. Liu and James W. Layland.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environme,:.
Journal of the Association for Computing Machinery 20(1):46-61, January, 1973.

[7] A.K. Mok.
Fundamental Design Problems of Distributed Systems for the Hard Real- Time

Environment.
PhD thesis, M.I.T., 1983.

[8] Ragunathan Rajkumar, Lui Sha, John P. Lehoczky.
Real-Time Synchronization Protocols for Multiprocessors.
In Proceedings of the Real-Time Systems Symposium, pages 259-269. IEEE, Huntsville,

Alabama, December, 1988.

[91 Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar.
Solutions for Some Practical Problems in Prioritized Preemptive Scheduling.
In Proceedings of the Real-Time Systems Symposium, pages 181-191. IEEE, New Or-

leans, Louisiana, December, 1986.

[10] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky.
Priority Inheritance Protocols: An Approach to Real-Time Synchronization.
Technical Report CMU-CS-87-181, Computer Science Department, Carnegie Mellon Uni-

versity, Pittsburgh, Pennsylvania, November, 1987.

[11] Sha, L., Rajkumar, R., Lehoczky, J.P., Ramamritham, K.
Mode Changes in a Prioritized Preemptive Scheduling Environment.
Accepted for Publication, Real- Time Systems Journal, 1989.
Also available as a Technical Report, Software Engineering Institute.

CMU/SEI-90-TR-6 45

[121 Lui Sha and John Goodencgh.
Real- T7me Scheduling Theory in Ada.
Technical Report, Software Engineering Institute, Carnegie Mellon University, 1989.
(. :U/SEI-TR-89-14, DTIC: ADA211397.

[131 Sprunt, B., Sha, L. and Lehuczky, J. P.
Schedulinq Sporadic and Aperiodic Events in a Hard Real- Time System.
Technical Report, Software Engineering Institute, Carnegie Mellon University, 1989.
CMU/SEI-89-TR-1 1, DTIC: ADA211344.

[14] Sprunt, B., Shi, L. and Lehoczky, J. P.
Aperiodic Task Scheduling for Hard Real-Time Systems.
The Journal of Real-Time Systems 1:27-60, 1989.

[15] Jay Kurt Strosnider.
Highly Responsive Real- Time Token Rings.
PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon Univer-

sity, August, 1988.

46 CMU/SEI-90-TR-6

I;ijLa

SECURITY CLASSIFICATION 01 THiS rAGL

REPORT DOCUMENTATION PAGE

to REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASS I FI ED NONE

2e SECURITY CLASSIFICATION AUTHORITY 3. OSTRISUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

0 o. OECLASSIF#CATIONI
D O

WNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

& PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMeER(Sl

CMU/SEI-90-TR-6 ESD-90-TR-207

6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7l NAME OF MONITORING ORGANIZATION
(I, appi ca bie)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
Sc. ADDRESS (City. State aRd ZIP Coe) 7b. AOORESS (City. State and ZIP Code,

CARNEGIE MELLON UNIVERSITY ESD/XRSI

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

Ga. NAME OF FUNDING/SPONSORING 1Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicableJ

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

8c. ADORESS 1City. State and ZIP Code) 10. SOURCE OF FUNDING NOS

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

SOFTWARE ENGINEERING INSTITUTE JPO

PTTTS*URG H PA 15213 N/A N/A N/A
11. TITLE (Include Security C 4 =aatcatonl

Implementing Sporatic Servers in Ada

12. PERSONAL AUTNORtSI

Brinkley Sprunt, Lui Sha
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. ,o.. Oayj 15 PAGE COUNT

FINAL FROM TO _ _ May 1990 46
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1S SUBJECT TERMS (CoR tn6 on P'wige it neceuary and Ident6f) by blocb num bar)

FIELD GROUP SUB GR

19. A6STRACT ICon tnuC on M,:'slfe ! ineccuary end idently by block number,

The purpose of this paper is to present the data structures and algorithms for
implementing sporadic servers [13) in real-time systems programmed in Ada. The sporadic
server algorithm is an extension of the rate monotonic scheduling algorithm [6].
Sporadic servers are casks created to provide limited and usually high-priority serv:e
for other tasks, especially aperiodic tasks. Sporadic servers can be used to guarantee
deadlines for hard-deadline aperiodic tasks and provide substantial improvements in
average response times for soft-deadline aperiodic tasks over polling techniques.
Sporadic servers also provide a mechanism for implementing the Period Transformation
technique[9] that can guarantee that a critical set of periodic tasks will always
meet their deadlines during a transient overload. Sporadic servers can also aid fault
detection and containment in a real-time systems by limiting the maximum execution
time consumed by a task and detecting attempts to exceed a specified limit. This paper
discusses two types of implementations for the sporadic server algorithm: (1) a partial

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CL-ASSIFICATION

UNCLASSIFIEO/UNLIMITED SAME AS RPT 0 DTIC USERS X UNCLASSIFIED, UNLIMITED

22a NAME OF RESPONSIBLE INDIVIDUAL 2b TELEPHONE NUMBER 22c OFFICE SYMBOL
IIKIflude

4
r Co"e,

KARL SHINGLER (412) 268-7630 SEL JPO

DD FORM 1473.83 APR EDITIONOF I JAN)3 IS OGSOtTE UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS WAG:

